
MATLAB 7
Function Reference: Volume 1(A-E)

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference

© COPYRIGHT 1984–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 1996 First printing For MATLAB 5.0 (Release 8)
June 1997 Online only Revised for MATLAB 5.1 (Release 9)
October 1997 Online only Revised for MATLAB 5.2 (Release 10)
January 1999 Online only Revised for MATLAB 5.3 (Release 11)
June 1999 Second printing For MATLAB 5.3 (Release 11)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)
June 2004 Online only Revised for 7.0 (Release 14)
September 2006 Online only Revised for 7.3 (Release 2006b)

Contents

Functions — By Category

1
Desktop Tools and Development Environment 1-3

Startup and Shutdown . 1-3
Command Window and History . 1-4
Help for Using MATLAB . 1-5
Workspace, Search Path, and File Operations 1-6
Programming Tools . 1-8
System . 1-11

Mathematics . 1-13
Arrays and Matrices . 1-14
Linear Algebra . 1-19
Elementary Math . 1-23
Polynomials . 1-28
Interpolation and Computational Geometry 1-28
Cartesian Coordinate System Conversion 1-31
Nonlinear Numerical Methods . 1-31
Specialized Math . 1-35
Sparse Matrices . 1-35
Math Constants . 1-39

Data Analysis . 1-41
Basic Operations . 1-41
Descriptive Statistics . 1-41
Filtering and Convolution . 1-42
Interpolation and Regression . 1-42
Fourier Transforms . 1-43
Derivatives and Integrals . 1-43
Time Series Objects . 1-44
Time Series Collections . 1-47

Programming and Data Types . 1-49
Data Types . 1-49
Data Type Conversion . 1-58
Operators and Special Characters . 1-60

v

String Functions . 1-62
Bit-wise Functions . 1-65
Logical Functions . 1-66
Relational Functions . 1-66
Set Functions . 1-67
Date and Time Functions . 1-67
Programming in MATLAB . 1-68

File I/O . 1-75
File Name Construction . 1-75
Opening, Loading, Saving Files . 1-76
Memory Mapping . 1-76
Low-Level File I/O . 1-76
Text Files . 1-77
XML Documents . 1-78
Spreadsheets . 1-78
Scientific Data . 1-79
Audio and Audio/Video . 1-80
Images . 1-82
Internet Exchange . 1-83

Graphics . 1-85
Basic Plots and Graphs . 1-85
Plotting Tools . 1-86
Annotating Plots . 1-86
Specialized Plotting . 1-87
Bit-Mapped Images . 1-91
Printing . 1-91
Handle Graphics . 1-92

3-D Visualization . 1-96
Surface and Mesh Plots . 1-96
View Control . 1-98
Lighting . 1-100
Transparency . 1-100
Volume Visualization . 1-101

Creating Graphical User Interfaces 1-103
Predefined Dialog Boxes . 1-103
Deploying User Interfaces . 1-104
Developing User Interfaces . 1-104
User Interface Objects . 1-105

vi Contents

Finding Objects from Callbacks . 1-106
GUI Utility Functions . 1-106
Controlling Program Execution . 1-107

External Interfaces . 1-108
Dynamic Link Libraries . 1-108
Java . 1-109
Component Object Model and ActiveX 1-110
Dynamic Data Exchange . 1-112
Web Services . 1-113
Serial Port Devices . 1-113

Functions — Alphabetical List

2

Index

vii

viii Contents

1

Functions — By Category

Desktop Tools and Development
Environment (p. 1-3)

Startup, Command Window, help,
editing and debugging, tuning, other
general functions

Mathematics (p. 1-13) Arrays and matrices, linear algebra,
other areas of mathematics

Data Analysis (p. 1-41) Basic data operations, descriptive
statistics, covariance and correlation,
filtering and convolution, numerical
derivatives and integrals, Fourier
transforms, time series analysis

Programming and Data Types
(p. 1-49)

Function/expression evaluation,
program control, function handles,
object oriented programming, error
handling, operators, data types,
dates and times, timers

File I/O (p. 1-75) General and low-level file I/O, plus
specific file formats, like audio,
spreadsheet, HDF, images

Graphics (p. 1-85) Line plots, annotating graphs,
specialized plots, images, printing,
Handle Graphics

3-D Visualization (p. 1-96) Surface and mesh plots, view control,
lighting and transparency, volume
visualization

1 Functions — By Category

Creating Graphical User Interfaces
(p. 1-103)

GUIDE, programming graphical
user interfaces

External Interfaces (p. 1-108) Interfaces to DLLs, Java, COM
and ActiveX, DDE, Web services,
and serial port devices, and C and
Fortran routines

1-2

Desktop Tools and Development Environment

Desktop Tools and Development Environment

Startup and Shutdown (p. 1-3) Startup and shutdown options,
preferences

Command Window and History
(p. 1-4)

Control Command Window and
History, enter statements and run
functions

Help for Using MATLAB (p. 1-5) Command line help, online
documentation in the Help browser,
demos

Workspace, Search Path, and File
Operations (p. 1-6)

Work with files, MATLAB search
path, manage variables

Programming Tools (p. 1-8) Edit and debug M-files, improve
performance, source control, publish
results

System (p. 1-11) Identify current computer, license,
product version, and more

Startup and Shutdown

exit Terminate MATLAB (same as quit)

finish MATLAB termination M-file

matlab (UNIX) Start MATLAB (UNIX systems)

matlab (Windows) Start MATLAB (Windows systems)

matlabrc MATLAB startup M-file for
single-user systems or system
administrators

prefdir Directory containing preferences,
history, and layout files

preferences Open Preferences dialog box for
MATLAB and related products

1-3

1 Functions — By Category

quit Terminate MATLAB

startup MATLAB startup M-file for
user-defined options

Command Window and History

clc Clear Command Window

commandhistory Open Command History window, or
select it if already open

commandwindow Open Command Window, or select it
if already open

diary Save session to file

dos Execute DOS command and return
result

format Set display format for output

home Move cursor to upper-left corner of
Command Window

matlabcolon (matlab:) Run specified function via hyperlink

more Control paged output for Command
Window

perl Call Perl script using appropriate
operating system executable

system Execute operating system command
and return result

unix Execute UNIX command and return
result

1-4

Desktop Tools and Development Environment

Help for Using MATLAB

builddocsearchdb Build searchable documentation
database

demo Access product demos via Help
browser

doc Reference page in Help browser

docopt Web browser for UNIX platforms

docsearch Open Help browser Search pane
and search for specified term

echodemo Run M-file demo step-by-step in
Command Window

help Help for MATLAB functions in
Command Window

helpbrowser Open Help browser to access all
online documentation and demos

helpwin Provide access to M-file help for all
functions

info Information about contacting The
MathWorks

lookfor Search for keyword in all help
entries

playshow Run M-file demo (deprecated; use
echodemo instead)

support Open MathWorks Technical Support
Web page

web Open Web site or file in Web browser
or Help browser

whatsnew Release Notes for MathWorks
products

1-5

1 Functions — By Category

Workspace, Search Path, and File Operations

Workspace (p. 1-6) Manage variables

Search Path (p. 1-6) View and change MATLAB search
path

File Operations (p. 1-7) View and change files and directories

Workspace

assignin Assign value to variable in specified
workspace

clear Remove items from workspace,
freeing up system memory

evalin Execute MATLAB expression in
specified workspace

exist Check existence of variable, function,
directory, or Java class

openvar Open workspace variable in Array
Editor or other tool for graphical
editing

pack Consolidate workspace memory

uiimport Open Import Wizard to import data

which Locate functions and files

workspace Open Workspace browser to manage
workspace

Search Path

addpath Add directories to MATLAB search
path

genpath Generate path string

partialpath Partial pathname description

1-6

Desktop Tools and Development Environment

path View or change MATLAB directory
search path

path2rc Save current MATLAB search path
to pathdef.m file

pathdef Directories in MATLAB search path

pathsep Path separator for current platform

pathtool Open Set Path dialog box to view
and change MATLAB path

restoredefaultpath Restore default MATLAB search
path

rmpath Remove directories from MATLAB
search path

savepath Save current MATLAB search path
to pathdef.m file

File Operations
See also “File I/O” on page 1-75 functions.

cd Change working directory

copyfile Copy file or directory

delete Remove files or graphics objects

dir Directory listing

exist Check existence of variable, function,
directory, or Java class

fileattrib Set or get attributes of file or
directory

filebrowser Current Directory browser

isdir Determine whether input is a
directory

lookfor Search for keyword in all help
entries

1-7

1 Functions — By Category

ls Directory contents on UNIX system

matlabroot Root directory of MATLAB
installation

mkdir Make new directory

movefile Move file or directory

pwd Identify current directory

recycle Set option to move deleted files to
recycle folder

rehash Refresh function and file system
path caches

rmdir Remove directory

toolboxdir Root directory for specified toolbox

type Display contents of file

web Open Web site or file in Web browser
or Help browser

what List MATLAB files in current
directory

which Locate functions and files

Programming Tools

Edit and Debug M-Files (p. 1-9) Edit and debug M-files

Improve Performance and Tune
M-Files (p. 1-9)

Improve performance and find
potential problems in M-files

Source Control (p. 1-10) Interface MATLAB with source
control system

Publishing (p. 1-10) Publish M-file code and results

1-8

Desktop Tools and Development Environment

Edit and Debug M-Files

clipboard Copy and paste strings to and from
system clipboard

datatipinfo Produce short description of input
variable

dbclear Clear breakpoints

dbcont Resume execution

dbdown Change local workspace context
when in debug mode

dbquit Quit debug mode

dbstack Function call stack

dbstatus List all breakpoints

dbstep Execute one or more lines from
current breakpoint

dbstop Set breakpoints

dbtype List M-file with line numbers

dbup Change local workspace context

debug List M-file debugging functions

edit Edit or create M-file

keyboard Input from keyboard

Improve Performance and Tune M-Files

memory Help for memory limitations

mlint Check M-files for possible problems

mlintrpt Run mlint for file or directory,
reporting results in browser

pack Consolidate workspace memory

profile Profile execution time for function

1-9

1 Functions — By Category

profsave Save profile report in HTML format

rehash Refresh function and file system
path caches

sparse Create sparse matrix

zeros Create array of all zeros

Source Control

checkin Check files into source control
system (UNIX)

checkout Check files out of source control
system (UNIX)

cmopts Name of source control system

customverctrl Allow custom source control system
(UNIX)

undocheckout Undo previous checkout from source
control system (UNIX)

verctrl Source control actions (Windows)

Publishing

grabcode MATLAB code from M-files
published to HTML

notebook Open M-book in Microsoft Word
(Windows)

publish Publish M-file containing cells,
saving output to file of specified type

1-10

Desktop Tools and Development Environment

System

Operating System Interface (p. 1-11) Exchange operating system
information and commands with
MATLAB

MATLAB Version and License
(p. 1-12)

Information about MATLAB version
and license

Operating System Interface

clipboard Copy and paste strings to and from
system clipboard

computer Information about computer on
which MATLAB is running

dos Execute DOS command and return
result

getenv Environment variable

hostid MATLAB server host identification
number

perl Call Perl script using appropriate
operating system executable

setenv Set environment variable

system Execute operating system command
and return result

unix Execute UNIX command and return
result

winqueryreg Item from Microsoft Windows
registry

1-11

1 Functions — By Category

MATLAB Version and License

ismac Determine whether running
Macintosh OS X versions of
MATLAB

ispc Determine whether PC (Windows)
version of MATLAB

isstudent Determine whether Student Version
of MATLAB

isunix Determine whether UNIX version of
MATLAB

javachk Generate error message based on
Java feature support

license Return license number or perform
licensing task

prefdir Directory containing preferences,
history, and layout files

usejava Determine whether Java feature is
supported in MATLAB

ver Version information for MathWorks
products

verLessThan Compare toolbox version to specified
version string

version Version number for MATLAB

1-12

Mathematics

Mathematics

Arrays and Matrices (p. 1-14) Basic array operators and operations,
creation of elementary and
specialized arrays and matrices

Linear Algebra (p. 1-19) Matrix analysis, linear equations,
eigenvalues, singular values,
logarithms, exponentials,
factorization

Elementary Math (p. 1-23) Trigonometry, exponentials and
logarithms, complex values,
rounding, remainders, discrete math

Polynomials (p. 1-28) Multiplication, division, evaluation,
roots, derivatives, integration,
eigenvalue problem, curve fitting,
partial fraction expansion

Interpolation and Computational
Geometry (p. 1-28)

Interpolation, Delaunay
triangulation and tessellation,
convex hulls, Voronoi diagrams,
domain generation

Cartesian Coordinate System
Conversion (p. 1-31)

Conversions between Cartesian and
polar or spherical coordinates

Nonlinear Numerical Methods
(p. 1-31)

Differential equations, optimization,
integration

Specialized Math (p. 1-35) Airy, Bessel, Jacobi, Legendre, beta,
elliptic, error, exponential integral,
gamma functions

Sparse Matrices (p. 1-35) Elementary sparse matrices,
operations, reordering algorithms,
linear algebra, iterative methods,
tree operations

Math Constants (p. 1-39) Pi, imaginary unit, infinity,
Not-a-Number, largest and smallest
positive floating point numbers,
floating point relative accuracy

1-13

1 Functions — By Category

Arrays and Matrices

Basic Information (p. 1-14) Display array contents, get array
information, determine array type

Operators (p. 1-15) Arithmetic operators

Elementary Matrices and Arrays
(p. 1-16)

Create elementary arrays of different
types, generate arrays for plotting,
array indexing, etc.

Array Operations (p. 1-17) Operate on array content, apply
function to each array element, find
cumulative product or sum, etc.

Array Manipulation (p. 1-17) Create, sort, rotate, permute,
reshape, and shift array contents

Specialized Matrices (p. 1-18) Create Hadamard, Companion,
Hankel, Vandermonde, Pascal
matrices, etc.

Basic Information

disp Display text or array

display Display text or array (overloaded
method)

isempty Determine whether array is empty

isequal Test arrays for equality

isequalwithequalnans Test arrays for equality, treating
NaNs as equal

isfinite Array elements that are finite

isfloat Determine whether input is
floating-point array

isinf Array elements that are infinite

isinteger Determine whether input is integer
array

1-14

Mathematics

islogical Determine whether input is logical
array

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isscalar Determine whether input is scalar

issparse Determine whether input is sparse

isvector Determine whether input is vector

length Length of vector

max Largest elements in array

min Smallest elements in array

ndims Number of array dimensions

numel Number of elements in array or
subscripted array expression

size Array dimensions

Operators

+ Addition

+ Unary plus

- Subtraction

- Unary minus

* Matrix multiplication

^ Matrix power

\ Backslash or left matrix divide

/ Slash or right matrix divide

’ Transpose

.’ Nonconjugated transpose

.* Array multiplication (element-wise)

1-15

1 Functions — By Category

.^ Array power (element-wise)

.\ Left array divide (element-wise)

./ Right array divide (element-wise)

Elementary Matrices and Arrays

blkdiag Construct block diagonal matrix
from input arguments

diag Diagonal matrices and diagonals of
matrix

eye Identity matrix

freqspace Frequency spacing for frequency
response

ind2sub Subscripts from linear index

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced
vectors

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

ones Create array of all ones

rand Uniformly distributed
pseudorandom numbers

randn Normally distributed random
numbers

sub2ind Single index from subscripts

zeros Create array of all zeros

1-16

Mathematics

Array Operations

See “Linear Algebra” on page 1-19 and “Elementary Math” on page 1-23 for
other array operations.

accumarray Construct array with accumulation

arrayfun Apply function to each element of
array

bsxfun Applies element-by-element binary
operation to two arrays with
singleton expansion enabled

cast Cast variable to different data type

cross Vector cross product

cumprod Cumulative product

cumsum Cumulative sum

dot Vector dot product

idivide Integer division with rounding
option

kron Kronecker tensor product

prod Product of array elements

sum Sum of array elements

tril Lower triangular part of matrix

triu Upper triangular part of matrix

Array Manipulation

blkdiag Construct block diagonal matrix
from input arguments

cat Concatenate arrays along specified
dimension

circshift Shift array circularly

1-17

1 Functions — By Category

diag Diagonal matrices and diagonals of
matrix

end Terminate block of code, or indicate
last array index

flipdim Flip array along specified dimension

fliplr Flip matrix left to right

flipud Flip matrix up to down

horzcat Concatenate arrays horizontally

inline Construct inline object

ipermute Inverse permute dimensions of N-D
array

permute Rearrange dimensions of N-D array

repmat Replicate and tile array

reshape Reshape array

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sort Sort array elements in ascending or
descending order

sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

vectorize Vectorize expression

vertcat Concatenate arrays vertically

Specialized Matrices

compan Companion matrix

gallery Test matrices

hadamard Hadamard matrix

hankel Hankel matrix

1-18

Mathematics

hilb Hilbert matrix

invhilb Inverse of Hilbert matrix

magic Magic square

pascal Pascal matrix

rosser Classic symmetric eigenvalue test
problem

toeplitz Toeplitz matrix

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

Linear Algebra

Matrix Analysis (p. 1-19) Compute norm, rank, determinant,
condition number, etc.

Linear Equations (p. 1-20) Solve linear systems, least
squares, LU factorization, Cholesky
factorization, etc.

Eigenvalues and Singular Values
(p. 1-21)

Eigenvalues, eigenvectors, Schur
decomposition, Hessenburg
matrices, etc.

Matrix Logarithms and Exponentials
(p. 1-22)

Matrix logarithms, exponentials,
square root

Factorization (p. 1-22) Cholesky, LU, and QR factorizations,
diagonal forms, singular value
decomposition

Matrix Analysis

cond Condition number with respect to
inversion

condeig Condition number with respect to
eigenvalues

1-19

1 Functions — By Category

det Matrix determinant

norm Vector and matrix norms

normest 2-norm estimate

null Null space

orth Range space of matrix

rank Rank of matrix

rcond Matrix reciprocal condition number
estimate

rref Reduced row echelon form

subspace Angle between two subspaces

trace Sum of diagonal elements

Linear Equations

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

cond Condition number with respect to
inversion

condest 1-norm condition number estimate

funm Evaluate general matrix function

ilu Sparse incomplete LU factorization

inv Matrix inverse

linsolve Solve linear system of equations

lscov Least-squares solution in presence
of known covariance

lsqnonneg Solve nonnegative least-squares
constraints problem

lu LU matrix factorization

1-20

Mathematics

luinc Sparse incomplete LU factorization

pinv Moore-Penrose pseudoinverse of
matrix

qr Orthogonal-triangular
decomposition

rcond Matrix reciprocal condition number
estimate

Eigenvalues and Singular Values

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

condeig Condition number with respect to
eigenvalues

eig Find eigenvalues and eigenvectors

eigs Find largest eigenvalues and
eigenvectors of sparse matrix

gsvd Generalized singular value
decomposition

hess Hessenberg form of matrix

ordeig Eigenvalues of quasitriangular
matrices

ordqz Reorder eigenvalues in QZ
factorization

ordschur Reorder eigenvalues in Schur
factorization

poly Polynomial with specified roots

polyeig Polynomial eigenvalue problem

1-21

1 Functions — By Category

rsf2csf Convert real Schur form to complex
Schur form

schur Schur decomposition

sqrtm Matrix square root

ss2tf Convert state-space filter
parameters to transfer function
form

svd Singular value decomposition

svds Find singular values and vectors

Matrix Logarithms and Exponentials

expm Matrix exponential

logm Matrix logarithm

sqrtm Matrix square root

Factorization

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

cholupdate Rank 1 update to Cholesky
factorization

gsvd Generalized singular value
decomposition

ilu Sparse incomplete LU factorization

lu LU matrix factorization

1-22

Mathematics

luinc Sparse incomplete LU factorization

planerot Givens plane rotation

qr Orthogonal-triangular
decomposition

qrdelete Remove column or row from QR
factorization

qrinsert Insert column or row into QR
factorization

qrupdate

qz QZ factorization for generalized
eigenvalues

rsf2csf Convert real Schur form to complex
Schur form

svd Singular value decomposition

Elementary Math

Trigonometric (p. 1-24) Trigonometric functions with results
in radians or degrees

Exponential (p. 1-25) Exponential, logarithm, power, and
root functions

Complex (p. 1-26) Numbers with real and imaginary
components, phase angles

Rounding and Remainder (p. 1-27) Rounding, modulus, and remainder

Discrete Math (e.g., Prime Factors)
(p. 1-27)

Prime factors, factorials,
permutations, rational fractions,
least common multiple, greatest
common divisor

1-23

1 Functions — By Category

Trigonometric

acos Inverse cosine; result in radians

acosd Inverse cosine; result in degrees

acosh Inverse hyperbolic cosine

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

acsch Inverse hyperbolic cosecant

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

asech Inverse hyperbolic secant

asin Inverse sine; result in radians

asind Inverse sine; result in degrees

asinh Inverse hyperbolic sine

atan Inverse tangent; result in radians

atan2 Four-quadrant inverse tangent

atand Inverse tangent; result in degrees

atanh Inverse hyperbolic tangent

cos Cosine of argument in radians

cosd Cosine ofo argument in degrees

cosh Hyperbolic cosine

cot Cotangent of argument in radians

cotd Cotangent of argument in degrees

coth Hyperbolic cotangent

csc Cosecant of argument in radians

1-24

Mathematics

cscd Cosecant of argument in degrees

csch Hyperbolic cosecant

hypot Square root of sum of squares

sec Secant of argument in radians

secd Secant of argument in degrees

sech Hyperbolic secant

sin Sine of argument in radians

sind Sine of argument in degrees

sinh Hyperbolic sine of argument in
radians

tan Tangent of argument in radians

tand Tangent of argument in degrees

tanh Hyperbolic tangent

Exponential

exp Exponential

expm1 Compute exp(x)-1 accurately for
small values of x

log Natural logarithm

log10 Common (base 10) logarithm

log1p Compute log(1+x) accurately for
small values of x

log2 Base 2 logarithm and dissect
floating-point numbers into
exponent and mantissa

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

pow2 Base 2 power and scale floating-point
numbers

1-25

1 Functions — By Category

reallog Natural logarithm for nonnegative
real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real
arrays

sqrt Square root

Complex

abs Absolute value and complex
magnitude

angle Phase angle

complex Construct complex data from real
and imaginary components

conj Complex conjugate

cplxpair Sort complex numbers into complex
conjugate pairs

i Imaginary unit

imag Imaginary part of complex number

isreal Determine whether input is real
array

j Imaginary unit

real Real part of complex number

sign Signum function

unwrap Correct phase angles to produce
smoother phase plots

1-26

Mathematics

Rounding and Remainder

ceil Round toward infinity

fix Round toward zero

floor Round toward minus infinity

idivide Integer division with rounding
option

mod Modulus after division

rem Remainder after division

round Round to nearest integer

Discrete Math (e.g., Prime Factors)

factor Prime factors

factorial Factorial function

gcd Greatest common divisor

isprime Array elements that are prime
numbers

lcm Least common multiple

nchoosek Binomial coefficient or all
combinations

perms All possible permutations

primes Generate list of prime numbers

rat, rats Rational fraction approximation

1-27

1 Functions — By Category

Polynomials

conv Convolution and polynomial
multiplication

deconv Deconvolution and polynomial
division

poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyint Integrate polynomial analytically

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Convert between partial fraction
expansion and polynomial
coefficients

roots Polynomial roots

Interpolation and Computational Geometry

Interpolation (p. 1-29) Data interpolation, data gridding,
polynomial evaluation, nearest point
search

Delaunay Triangulation and
Tessellation (p. 1-30)

Delaunay triangulation and
tessellation, triangular surface and
mesh plots

Convex Hull (p. 1-30) Plot convex hull, plotting functions

Voronoi Diagrams (p. 1-30) Plot Voronoi diagram, patch graphics
object, plotting functions

Domain Generation (p. 1-31) Generate arrays for 3-D plots, or for
N-D functions and interpolation

1-28

Mathematics

Interpolation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

griddata Data gridding

griddata3 Data gridding and hypersurface
fitting for 3-D data

griddatan Data gridding and hypersurface
fitting (dimension >= 2)

interp1 1-D data interpolation (table lookup)

interp1q Quick 1-D linear interpolation

interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpft 1-D interpolation using FFT method

interpn N-D data interpolation (table lookup)

meshgrid Generate X and Y arrays for 3-D plots

mkpp Make piecewise polynomial

ndgrid Generate arrays for N-D functions
and interpolation

pchip Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP)

ppval Evaluate piecewise polynomial

spline Cubic spline data interpolation

tsearchn N-D closest simplex search

unmkpp Piecewise polynomial details

1-29

1 Functions — By Category

Delaunay Triangulation and Tessellation

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

tsearch Search for enclosing Delaunay
triangle

tsearchn N-D closest simplex search

Convex Hull

convhull Convex hull

convhulln N-D convex hull

patch Create patch graphics object

plot 2-D line plot

trisurf Triangular surface plot

Voronoi Diagrams

dsearch Search Delaunay triangulation for
nearest point

patch Create patch graphics object

plot 2-D line plot

1-30

Mathematics

voronoi Voronoi diagram

voronoin N-D Voronoi diagram

Domain Generation

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

Cartesian Coordinate System Conversion

cart2pol Transform Cartesian coordinates to
polar or cylindrical

cart2sph Transform Cartesian coordinates to
spherical

pol2cart Transform polar or cylindrical
coordinates to Cartesian

sph2cart Transform spherical coordinates to
Cartesian

Nonlinear Numerical Methods

Ordinary Differential Equations
(IVP) (p. 1-32)

Solve stiff and nonstiff differential
equations, define the problem, set
solver options, evaluate solution

Delay Differential Equations
(p. 1-33)

Solve delay differential equations
with constant and general delays,
set solver options, evaluate solution

Boundary Value Problems (p. 1-33) Solve boundary value problems for
ordinary differential equations, set
solver options, evaluate solution

1-31

1 Functions — By Category

Partial Differential Equations
(p. 1-34)

Solve initial-boundary value
problems for parabolic-elliptic PDEs,
evaluate solution

Optimization (p. 1-34) Find minimum of single and
multivariable functions, solve
nonnegative least-squares constraint
problem

Numerical Integration (Quadrature)
(p. 1-34)

Evaluate Simpson, Lobatto, and
vectorized quadratures, evaluate
double and triple integrals

Ordinary Differential Equations (IVP)

decic Compute consistent initial conditions
for ode15i

deval Evaluate solution of differential
equation problem

ode15i Solve fully implicit differential
equations, variable order method

ode23, ode45, ode113, ode15s,
ode23s, ode23t, ode23tb

Solve initial value problems for
ordinary differential equations

odefile Define differential equation problem
for ordinary differential equation
solvers

odeget Ordinary differential equation
options parameters

odeset Create or alter options structure
for ordinary differential equation
solvers

odextend Extend solution of initial value
problem for ordinary differential
equation

1-32

Mathematics

Delay Differential Equations

dde23 Solve delay differential equations
(DDEs) with constant delays

ddeget Extract properties from delay
differential equations options
structure

ddesd Solve delay differential equations
(DDEs) with general delays

ddeset Create or alter delay differential
equations options structure

deval Evaluate solution of differential
equation problem

Boundary Value Problems

bvp4c Solve boundary value problems for
ordinary differential equations

bvpget Extract properties from options
structure created with bvpset

bvpinit Form initial guess for bvp4c

bvpset Create or alter options structure of
boundary value problem

bvpxtend Form guess structure for extending
boundary value solutions

deval Evaluate solution of differential
equation problem

1-33

1 Functions — By Category

Partial Differential Equations

pdepe Solve initial-boundary value
problems for parabolic-elliptic PDEs
in 1-D

pdeval Evaluate numerical solution of PDE
using output of pdepe

Optimization

fminbnd Find minimum of single-variable
function on fixed interval

fminsearch Find minimum of unconstrained
multivariable function using
derivative-free method

fzero Find root of continuous function of
one variable

lsqnonneg Solve nonnegative least-squares
constraints problem

optimget Optimization options values

optimset Create or edit optimization options
structure

Numerical Integration (Quadrature)

dblquad Numerically evaluate double
integral

quad Numerically evaluate integral,
adaptive Simpson quadrature

quadl Numerically evaluate integral,
adaptive Lobatto quadrature

quadv Vectorized quadrature

triplequad Numerically evaluate triple integral

1-34

Mathematics

Specialized Math

airy Airy functions

besselh Bessel function of third kind (Hankel
function)

besseli Modified Bessel function of first kind

besselj Bessel function of first kind

besselk Modified Bessel function of second
kind

bessely Bessel function of second kind

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipj Jacobi elliptic functions

ellipke Complete elliptic integrals of first
and second kind

erf, erfc, erfcx, erfinv, erfcinv Error functions

expint Exponential integral

gamma, gammainc, gammaln Gamma functions

legendre Associated Legendre functions

psi Psi (polygamma) function

Sparse Matrices

Elementary Sparse Matrices (p. 1-36) Create random and nonrandom
sparse matrices

Full to Sparse Conversion (p. 1-36) Convert full matrix to sparse, sparse
matrix to full

1-35

1 Functions — By Category

Working with Sparse Matrices
(p. 1-37)

Test matrix for sparseness, get
information on sparse matrix,
allocate sparse matrix, apply
function to nonzero elements,
visualize sparsity pattern.

Reordering Algorithms (p. 1-37) Random, column, minimum degree,
Dulmage-Mendelsohn, and reverse
Cuthill-McKee permutations

Linear Algebra (p. 1-38) Compute norms, eigenvalues,
factorizations, least squares,
structural rank

Linear Equations (Iterative
Methods) (p. 1-38)

Methods for conjugate and
biconjugate gradients, residuals,
lower quartile

Tree Operations (p. 1-39) Elimination trees, tree plotting,
factorization analysis

Elementary Sparse Matrices

spdiags Extract and create sparse band and
diagonal matrices

speye Sparse identity matrix

sprand Sparse uniformly distributed
random matrix

sprandn Sparse normally distributed random
matrix

sprandsym Sparse symmetric random matrix

Full to Sparse Conversion

find Find indices and values of nonzero
elements

full Convert sparse matrix to full matrix

1-36

Mathematics

sparse Create sparse matrix

spconvert Import matrix from sparse matrix
external format

Working with Sparse Matrices

issparse Determine whether input is sparse

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

nzmax Amount of storage allocated for
nonzero matrix elements

spalloc Allocate space for sparse matrix

spfun Apply function to nonzero sparse
matrix elements

spones Replace nonzero sparse matrix
elements with ones

spparms Set parameters for sparse matrix
routines

spy Visualize sparsity pattern

Reordering Algorithms

amd Approximate minimum degree
permutation

colamd Column approximate minimum
degree permutation

colperm Sparse column permutation based
on nonzero count

dmperm Dulmage-Mendelsohn decomposition

ldl Block ldl’ factorization for Hermitian
indefinite matrices

1-37

1 Functions — By Category

randperm Random permutation

symamd Symmetric approximate minimum
degree permutation

symrcm Sparse reverse Cuthill-McKee
ordering

Linear Algebra

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

condest 1-norm condition number estimate

eigs Find largest eigenvalues and
eigenvectors of sparse matrix

ilu Sparse incomplete LU factorization

luinc Sparse incomplete LU factorization

normest 2-norm estimate

spaugment Form least squares augmented
system

sprank Structural rank

svds Find singular values and vectors

Linear Equations (Iterative Methods)

bicg Biconjugate gradients method

bicgstab Biconjugate gradients stabilized
method

cgs Conjugate gradients squared method

gmres Generalized minimum residual
method (with restarts)

lsqr LSQR method

1-38

Mathematics

minres Minimum residual method

pcg Preconditioned conjugate gradients
method

qmr Quasi-minimal residual method

symmlq Symmetric LQ method

Tree Operations

etree Elimination tree

etreeplot Plot elimination tree

gplot Plot nodes and links representing
adjacency matrix

symbfact Symbolic factorization analysis

treelayout Lay out tree or forest

treeplot Plot picture of tree

Math Constants

eps Floating-point relative accuracy

i Imaginary unit

Inf Infinity

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

j Imaginary unit

NaN Not-a-Number

pi Ratio of circle’s circumference to its
diameter, π

1-39

1 Functions — By Category

realmax Largest positive floating-point
number

realmin Smallest positive floating-point
number

1-40

Data Analysis

Data Analysis

Basic Operations (p. 1-41) Sums, products, sorting

Descriptive Statistics (p. 1-41) Statistical summaries of data

Filtering and Convolution (p. 1-42) Data preprocessing

Interpolation and Regression
(p. 1-42)

Data fitting

Fourier Transforms (p. 1-43) Frequency content of data

Derivatives and Integrals (p. 1-43) Data rates and accumulations

Time Series Objects (p. 1-44) Methods for timeseries objects

Time Series Collections (p. 1-47) Methods for tscollection objects

Basic Operations

cumprod Cumulative product

cumsum Cumulative sum

prod Product of array elements

sort Sort array elements in ascending or
descending order

sortrows Sort rows in ascending order

sum Sum of array elements

Descriptive Statistics

corrcoef Correlation coefficients

cov Covariance matrix

max Largest elements in array

mean Average or mean value of array

median Median value of array

1-41

1 Functions — By Category

min Smallest elements in array

mode Most frequent values in array

std Standard deviation

var Variance

Filtering and Convolution

conv Convolution and polynomial
multiplication

conv2 2-D convolution

convn N-D convolution

deconv Deconvolution and polynomial
division

detrend Remove linear trends

filter 1-D digital filter

filter2 2-D digital filter

Interpolation and Regression

interp1 1-D data interpolation (table lookup)

interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpn N-D data interpolation (table lookup)

mldivide \, mrdivide / Left or right matrix division

polyfit Polynomial curve fitting

polyval Polynomial evaluation

1-42

Data Analysis

Fourier Transforms

abs Absolute value and complex
magnitude

angle Phase angle

cplxpair Sort complex numbers into complex
conjugate pairs

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

fftn N-D discrete Fourier transform

fftshift Shift zero-frequency component to
center of spectrum

fftw Interface to FFTW library run-time
algorithm tuning control

ifft Inverse discrete Fourier transform

ifft2 2-D inverse discrete Fourier
transform

ifftn N-D inverse discrete Fourier
transform

ifftshift Inverse FFT shift

nextpow2 Next higher power of 2

unwrap Correct phase angles to produce
smoother phase plots

Derivatives and Integrals

cumtrapz Cumulative trapezoidal numerical
integration

del2 Discrete Laplacian

diff Differences and approximate
derivatives

1-43

1 Functions — By Category

gradient Numerical gradient

polyder Polynomial derivative

polyint Integrate polynomial analytically

trapz Trapezoidal numerical integration

Time Series Objects

General Purpose (p. 1-44) Combine timeseries objects,
query and set timeseries object
properties, plot timeseries objects

Data Manipulation (p. 1-45) Add or delete data, manipulate
timeseries objects

Event Data (p. 1-46) Add or delete events, create new
timeseries objects based on event
data

Descriptive Statistics (p. 1-46) Descriptive statistics for timeseries
objects

General Purpose

get (timeseries) Query timeseries object property
values

getdatasamplesize Size of data sample in timeseries
object

getqualitydesc Data quality descriptions

isempty (timeseries) Determine whether timeseries
object is empty

length (timeseries) Length of time vector

plot (timeseries) Plot time series

set (timeseries) Set properties of timeseries object

size (timeseries) Size of timeseries object

1-44

Data Analysis

timeseries Create timeseries object

tsdata.event Construct event object for
timeseries object

tsprops Help on timeseries object
properties

tstool Open Time Series Tools GUI

Data Manipulation

addsample Add data sample to timeseries
object

ctranspose (timeseries) Transpose timeseries object

delsample Remove sample from timeseries
object

detrend (timeseries) Subtract mean or best-fit line and all
NaNs from time series

filter (timeseries) Shape frequency content of time
series

getabstime (timeseries) Extract date-string time vector into
cell array

getinterpmethod Interpolation method for timeseries
object

getsampleusingtime (timeseries) Extract data samples into new
timeseries object

idealfilter (timeseries) Apply ideal (noncausal) filter to
timeseries object

resample (timeseries) Select or interpolate timeseries
data using new time vector

setabstime (timeseries) Set times of timeseries object as
date strings

setinterpmethod Set default interpolation method for
timeseries object

1-45

1 Functions — By Category

synchronize Synchronize and resample two
timeseries objects using common
time vector

transpose (timeseries) Transpose timeseries object

vertcat (timeseries) Vertical concatenation of timeseries
objects

Event Data

addevent Add event to timeseries object

delevent Remove tsdata.event objects from
timeseries object

gettsafteratevent New timeseries object with samples
occurring at or after event

gettsafterevent New timeseries object with samples
occurring after event

gettsatevent New timeseries object with samples
occurring at event

gettsbeforeatevent New timeseries object with samples
occurring before or at event

gettsbeforeevent New timeseries object with samples
occurring before event

gettsbetweenevents New timeseries object with samples
occurring between events

Descriptive Statistics

iqr (timeseries) Interquartile range of timeseries
data

max (timeseries) Maximum value of timeseries data

mean (timeseries) Mean value of timeseries data

median (timeseries) Median value of timeseries data

1-46

Data Analysis

min (timeseries) Minimum value of timeseries data

std (timeseries) Standard deviation of timeseries
data

sum (timeseries) Sum of timeseries data

var (timeseries) Variance of timeseries data

Time Series Collections

General Purpose (p. 1-47) Query and set tscollection object
properties, plot tscollection
objects

Data Manipulation (p. 1-48) Add or delete data, manipulate
tscollection objects

General Purpose

get (tscollection) Query tscollection object property
values

isempty (tscollection) Determine whether tscollection
object is empty

length (tscollection) Length of time vector

plot (timeseries) Plot time series

set (tscollection) Set properties of tscollection
object

size (tscollection) Size of tscollection object

tscollection Create tscollection object

tstool Open Time Series Tools GUI

1-47

1 Functions — By Category

Data Manipulation

addsampletocollection Add sample to tscollection object

addts Add timeseries object to
tscollection object

delsamplefromcollection Remove sample from tscollection
object

getabstime (tscollection) Extract date-string time vector into
cell array

getsampleusingtime (tscollection) Extract data samples into new
tscollection object

gettimeseriesnames Cell array of names of timeseries
objects in tscollection object

horzcat (tscollection) Horizontal concatenation for
tscollection objects

removets Remove timeseries objects from
tscollection object

resample (tscollection) Select or interpolate data in
tscollection using new time vector

setabstime (tscollection) Set times of tscollection object as
date strings

settimeseriesnames Change name of timeseries object
in tscollection

vertcat (tscollection) Vertical concatenation for
tscollection objects

1-48

Programming and Data Types

Programming and Data Types

Data Types (p. 1-49) Numeric, character, structures, cell
arrays, and data type conversion

Data Type Conversion (p. 1-58) Convert one numeric type to another,
numeric to string, string to numeric,
structure to cell array, etc.

Operators and Special Characters
(p. 1-60)

Arithmetic, relational, and logical
operators, and special characters

String Functions (p. 1-62) Create, identify, manipulate, parse,
evaluate, and compare strings

Bit-wise Functions (p. 1-65) Perform set, shift, and, or, compare,
etc. on specific bit fields

Logical Functions (p. 1-66) Evaluate conditions, testing for true
or false

Relational Functions (p. 1-66) Compare values for equality, greater
than, less than, etc.

Set Functions (p. 1-67) Find set members, unions,
intersections, etc.

Date and Time Functions (p. 1-67) Obtain information about dates and
times

Programming in MATLAB (p. 1-68) M-files, function/expression
evaluation, program control,
function handles, object oriented
programming, error handling

Data Types

Numeric Types (p. 1-50) Integer and floating-point data

Characters and Strings (p. 1-51) Characters and arrays of characters

Structures (p. 1-52) Data of varying types and sizes
stored in fields of a structure

1-49

1 Functions — By Category

Cell Arrays (p. 1-53) Data of varying types and sizes
stored in cells of array

Function Handles (p. 1-54) Invoke a function indirectly via
handle

MATLAB Classes and Objects
(p. 1-55)

MATLAB object-oriented class
system

Java Classes and Objects (p. 1-55) Access Java classes through
MATLAB interface

Data Type Identification (p. 1-57) Determine data type of a variable

Numeric Types

arrayfun Apply function to each element of
array

cast Cast variable to different data type

cat Concatenate arrays along specified
dimension

class Create object or return class of object

find Find indices and values of nonzero
elements

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

intwarning Control state of integer warnings

ipermute Inverse permute dimensions of N-D
array

isa Determine whether input is object
of given class

isequal Test arrays for equality

1-50

Programming and Data Types

isequalwithequalnans Test arrays for equality, treating
NaNs as equal

isfinite Array elements that are finite

isinf Array elements that are infinite

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isreal Determine whether input is real
array

isscalar Determine whether input is scalar

isvector Determine whether input is vector

permute Rearrange dimensions of N-D array

realmax Largest positive floating-point
number

realmin Smallest positive floating-point
number

reshape Reshape array

squeeze Remove singleton dimensions

zeros Create array of all zeros

Characters and Strings

See “String Functions” on page 1-62 for all string-related functions.

cellstr Create cell array of strings from
character array

char Convert to character array (string)

eval Execute string containing MATLAB
expression

findstr Find string within another, longer
string

1-51

1 Functions — By Category

isstr Determine whether input is
character array

regexp, regexpi Match regular expression

sprintf Write formatted data to string

sscanf Read formatted data from string

strcat Concatenate strings horizontally

strcmp, strcmpi Compare strings

strings MATLAB string handling

strjust Justify character array

strmatch Find possible matches for string

strread Read formatted data from string

strrep Find and replace substring

strtrim Remove leading and trailing white
space from string

strvcat Concatenate strings vertically

Structures

arrayfun Apply function to each element of
array

cell2struct Convert cell array to structure array

class Create object or return class of object

deal Distribute inputs to outputs

fieldnames Field names of structure, or public
fields of object

getfield Field of structure array

isa Determine whether input is object
of given class

isequal Test arrays for equality

1-52

Programming and Data Types

isfield Determine whether input is
structure array field

isscalar Determine whether input is scalar

isstruct Determine whether input is
structure array

isvector Determine whether input is vector

orderfields Order fields of structure array

rmfield Remove fields from structure

setfield Set value of structure array field

struct Create structure array

struct2cell Convert structure to cell array

structfun Apply function to each field of scalar
structure

Cell Arrays

cell Construct cell array

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

celldisp Cell array contents

cellfun Apply function to each cell in cell
array

cellplot Graphically display structure of cell
array

cellstr Create cell array of strings from
character array

class Create object or return class of object

deal Distribute inputs to outputs

1-53

1 Functions — By Category

isa Determine whether input is object
of given class

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

isequal Test arrays for equality

isscalar Determine whether input is scalar

isvector Determine whether input is vector

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

struct2cell Convert structure to cell array

Function Handles

class Create object or return class of object

feval Evaluate function

func2str Construct function name string from
function handle

functions Information about function handle

function_handle (@) Handle used in calling functions
indirectly

isa Determine whether input is object
of given class

isequal Test arrays for equality

str2func Construct function handle from
function name string

1-54

Programming and Data Types

MATLAB Classes and Objects

class Create object or return class of object

fieldnames Field names of structure, or public
fields of object

inferiorto Establish inferior class relationship

isa Determine whether input is object
of given class

isobject Determine whether input is
MATLAB OOPs object

loadobj User-defined extension of load
function for user objects

methods Information on class methods

methodsview Information on class methods in
separate window

saveobj User-defined extension of save
function for user objects

subsasgn Subscripted assignment for objects

subsindex Subscripted indexing for objects

subsref Subscripted reference for objects

substruct Create structure argument for
subsasgn or subsref

superiorto Establish superior class relationship

Java Classes and Objects

cell Construct cell array

class Create object or return class of object

clear Remove items from workspace,
freeing up system memory

depfun List dependencies of M-file or P-file

1-55

1 Functions — By Category

exist Check existence of variable, function,
directory, or Java class

fieldnames Field names of structure, or public
fields of object

im2java Convert image to Java image

import Add package or class to current Java
import list

inmem Names of M-files, MEX-files, Java
classes in memory

isa Determine whether input is object
of given class

isjava Determine whether input is Java
object

javaaddpath Add entries to dynamic Java class
path

javaArray Construct Java array

javachk Generate error message based on
Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java
class path

methods Information on class methods

methodsview Information on class methods in
separate window

usejava Determine whether Java feature is
supported in MATLAB

which Locate functions and files

1-56

Programming and Data Types

Data Type Identification

is* Detect state

isa Determine whether input is object
of given class

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isfield Determine whether input is
structure array field

isfloat Determine whether input is
floating-point array

isinteger Determine whether input is integer
array

isjava Determine whether input is Java
object

islogical Determine whether input is logical
array

isnumeric Determine whether input is numeric
array

isobject Determine whether input is
MATLAB OOPs object

isreal Determine whether input is real
array

isstr Determine whether input is
character array

isstruct Determine whether input is
structure array

who, whos List variables in workspace

1-57

1 Functions — By Category

Data Type Conversion

Numeric (p. 1-58) Convert data of one numeric type to
another numeric type

String to Numeric (p. 1-58) Convert characters to numeric
equivalent

Numeric to String (p. 1-59) Convert numeric to character
equivalent

Other Conversions (p. 1-59) Convert to structure, cell array,
function handle, etc.

Numeric

cast Cast variable to different data type

double Convert to double precision

int8, int16, int32, int64 Convert to signed integer

single Convert to single precision

typecast Convert data types without changing
underlying data

uint8, uint16, uint32, uint64 Convert to unsigned integer

String to Numeric

base2dec Convert base N number string to
decimal number

bin2dec Convert binary number string to
decimal number

cast Cast variable to different data type

hex2dec Convert hexadecimal number string
to decimal number

hex2num Convert hexadecimal number string
to double-precision number

1-58

Programming and Data Types

str2double Convert string to double-precision
value

str2num Convert string to number

unicode2native Convert Unicode characters to
numeric bytes

Numeric to String

cast Cast variable to different data type

char Convert to character array (string)

dec2base Convert decimal to base N number
in string

dec2bin Convert decimal to binary number
in string

dec2hex Convert decimal to hexadecimal
number in string

int2str Convert integer to string

mat2str Convert matrix to string

native2unicode Convert numeric bytes to Unicode
characters

num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

datestr Convert date and time to string
format

func2str Construct function name string from
function handle

1-59

1 Functions — By Category

logical Convert numeric values to logical

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

num2hex Convert singles and doubles to IEEE
hexadecimal strings

str2func Construct function handle from
function name string

str2mat Form blank-padded character matrix
from strings

struct2cell Convert structure to cell array

Operators and Special Characters

Arithmetic Operators (p. 1-60) Plus, minus, power, left and right
divide, transpose, etc.

Relational Operators (p. 1-61) Equal to, greater than, less than or
equal to, etc.

Logical Operators (p. 1-61) Element-wise and short circuit and,
or, not

Special Characters (p. 1-62) Array constructors, line
continuation, comments, etc.

Arithmetic Operators

+ Plus

- Minus

. Decimal point

= Assignment

* Matrix multiplication

/ Matrix right division

1-60

Programming and Data Types

\ Matrix left division

^ Matrix power

’ Matrix transpose

.* Array multiplication (element-wise)

./ Array right division (element-wise)

.\ Array left division (element-wise)

.^ Array power (element-wise)

.’ Array transpose

Relational Operators

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Logical Operators
See also “Logical Functions” on page 1-66 for functions like xor, all, any, etc.

&& Logical AND

|| Logical OR

& Logical AND for arrays

| Logical OR for arrays

~ Logical NOT

1-61

1 Functions — By Category

Special Characters

: Create vectors, subscript arrays, specify for-loop iterations

() Pass function arguments, prioritize operators

[] Construct array, concatenate elements, specify multiple
outputs from function

{ } Construct cell array, index into cell array

. Insert decimal point, define structure field, reference methods
of object

.() Reference dynamic field of structure

.. Reference parent directory

... Continue statement to next line

, Separate rows of array, separate function input/output
arguments, separate commands

; Separate columns of array, suppress output from current
command

% Insert comment line into code

%{ %} Insert block of comments into code

! Issue command to operating system

’ ’ Construct character array

@ Construct function handle, reference class directory

String Functions

Description of Strings in MATLAB
(p. 1-63)

Basics of string handling in
MATLAB

String Creation (p. 1-63) Create strings, cell arrays of strings,
concatenate strings together

String Identification (p. 1-63) Identify characteristics of strings

1-62

Programming and Data Types

String Manipulation (p. 1-64) Convert case, strip blanks, replace
characters

String Parsing (p. 1-64) Formatted read, regular expressions,
locate substrings

String Evaluation (p. 1-65) Evaluate stated expression in string

String Comparison (p. 1-65) Compare contents of strings

Description of Strings in MATLAB

strings MATLAB string handling

String Creation

blanks Create string of blank characters

cellstr Create cell array of strings from
character array

char Convert to character array (string)

sprintf Write formatted data to string

strcat Concatenate strings horizontally

strvcat Concatenate strings vertically

String Identification

class Create object or return class of object

isa Determine whether input is object
of given class

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

1-63

1 Functions — By Category

isletter Array elements that are alphabetic
letters

isscalar Determine whether input is scalar

isspace Array elements that are space
characters

isstrprop Determine whether string is of
specified category

isvector Determine whether input is vector

String Manipulation

deblank Strip trailing blanks from end of
string

lower Convert string to lowercase

strjust Justify character array

strrep Find and replace substring

strtrim Remove leading and trailing white
space from string

upper Convert string to uppercase

String Parsing

findstr Find string within another, longer
string

regexp, regexpi Match regular expression

regexprep Replace string using regular
expression

regexptranslate Translate string into regular
expression

sscanf Read formatted data from string

strfind Find one string within another

1-64

Programming and Data Types

strread Read formatted data from string

strtok Selected parts of string

String Evaluation

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

String Comparison

strcmp, strcmpi Compare strings

strmatch Find possible matches for string

strncmp, strncmpi Compare first n characters of strings

Bit-wise Functions

bitand Bitwise AND

bitcmp Bitwise complement

bitget Bit at specified position

bitmax Maximum double-precision
floating-point integer

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

swapbytes Swap byte ordering

1-65

1 Functions — By Category

Logical Functions

all Determine whether all array
elements are nonzero

and Find logical AND of array or scalar
inputs

any Determine whether any array
elements are nonzero

false Logical 0 (false)

find Find indices and values of nonzero
elements

isa Determine whether input is object
of given class

iskeyword Determine whether input is
MATLAB keyword

isvarname Determine whether input is valid
variable name

logical Convert numeric values to logical

not Find logical NOT of array or scalar
input

or Find logical OR of array or scalar
inputs

true Logical 1 (true)

xor Logical exclusive-OR

See “Operators and Special Characters” on page 1-60 for logical operators.

Relational Functions

eq Test for equality

ge Test for greater than or equal to

gt Test for greater than

1-66

Programming and Data Types

le Test for less than or equal to

lt Test for less than

ne Test for inequality

See “Operators and Special Characters” on page 1-60 for relational operators.

Set Functions

intersect Find set intersection of two vectors

ismember Array elements that are members
of set

issorted Determine whether set elements are
in sorted order

setdiff Find set difference of two vectors

setxor Find set exclusive OR of two vectors

union Find set union of two vectors

unique Find unique elements of vector

Date and Time Functions

addtodate Modify date number by field

calendar Calendar for specified month

clock Current time as date vector

cputime Elapsed CPU time

date Current date string

datenum Convert date and time to serial date
number

datestr Convert date and time to string
format

datevec Convert date and time to vector of
components

1-67

1 Functions — By Category

eomday Last day of month

etime Time elapsed between date vectors

now Current date and time

weekday Day of week

Programming in MATLAB

M-File Functions and Scripts
(p. 1-68)

Declare functions, handle
arguments, identify dependencies,
etc.

Evaluation of Expressions and
Functions (p. 1-70)

Evaluate expression in string, apply
function to array, run script file, etc.

Timer Functions (p. 1-71) Schedule execution of MATLAB
commands

Variables and Functions in Memory
(p. 1-71)

List files in memory, clear M-files
in memory, assign to variable in
nondefault workspace, refresh
caches

Control Flow (p. 1-72) if-then-else, for loops, switch-case,
try-catch

Error Handling (p. 1-73) Generate warnings and errors, test
for and catch errors, retrieve most
recent error message

MEX Programming (p. 1-74) Compile MEX function from C
or Fortran code, list MEX-files in
memory, debug MEX-files

M-File Functions and Scripts

addOptional (inputParser) Add optional argument to
inputParser schema

addParamValue (inputParser) Add parameter-value argument to
inputParser schema

1-68

Programming and Data Types

addRequired (inputParser) Add required argument to
inputParser schema

createCopy (inputParser) Create copy of inputParser object

depdir List dependent directories of M-file
or P-file

depfun List dependencies of M-file or P-file

echo Echo M-files during execution

end Terminate block of code, or indicate
last array index

function Declare M-file function

input Request user input

inputname Variable name of function input

inputParser Construct input parser object

mfilename Name of currently running M-file

namelengthmax Maximum identifier length

nargchk Validate number of input arguments

nargin, nargout Number of function arguments

nargoutchk Validate number of output
arguments

parse (inputParser) Parse and validate named inputs

pcode Create preparsed pseudocode file
(P-file)

script Script M-file description

syntax Two ways to call MATLAB functions

varargin Variable length input argument list

varargout Variable length output argument list

1-69

1 Functions — By Category

Evaluation of Expressions and Functions

ans Most recent answer

arrayfun Apply function to each element of
array

assert Generate error when condition is
violated

builtin Execute built-in function from
overloaded method

cellfun Apply function to each cell in cell
array

echo Echo M-files during execution

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

feval Evaluate function

iskeyword Determine whether input is
MATLAB keyword

isvarname Determine whether input is valid
variable name

pause Halt execution temporarily

run Run script that is not on current
path

script Script M-file description

structfun Apply function to each field of scalar
structure

1-70

Programming and Data Types

symvar Determine symbolic variables in
expression

tic, toc Measure performance using
stopwatch timer

Timer Functions

delete (timer) Remove timer object from memory

disp (timer) Information about timer object

get (timer) Timer object properties

isvalid (timer) Determine whether timer object is
valid

set (timer) Configure or display timer object
properties

start Start timer(s) running

startat Start timer(s) running at specified
time

stop Stop timer(s)

timer Construct timer object

timerfind Find timer objects

timerfindall Find timer objects, including
invisible objects

wait Wait until timer stops running

Variables and Functions in Memory

ans Most recent answer

assignin Assign value to variable in specified
workspace

datatipinfo Produce short description of input
variable

1-71

1 Functions — By Category

genvarname Construct valid variable name from
string

global Declare global variables

inmem Names of M-files, MEX-files, Java
classes in memory

isglobal Determine whether input is global
variable

mislocked Determine whether M-file or
MEX-file cannot be cleared from
memory

mlock Prevent clearing M-file or MEX-file
from memory

munlock Allow clearing M-file or MEX-file
from memory

namelengthmax Maximum identifier length

pack Consolidate workspace memory

persistent Define persistent variable

rehash Refresh function and file system
path caches

Control Flow

break Terminate execution of for or while
loop

case Execute block of code if condition is
true

catch Specify how to respond to error in
try statement

continue Pass control to next iteration of for
or while loop

else Execute statements if condition is
false

1-72

Programming and Data Types

elseif Execute statements if additional
condition is true

end Terminate block of code, or indicate
last array index

error Display message and abort function

for Execute block of code specified
number of times

if Execute statements if condition is
true

otherwise Default part of switch statement

return Return to invoking function

switch Switch among several cases, based
on expression

try Attempt to execute block of code, and
catch errors

while Repeatedly execute statements while
condition is true

Error Handling

assert Generate error when condition is
violated

catch Specify how to respond to error in
try statement

error Display message and abort function

ferror Query MATLAB about errors in file
input or output

intwarning Control state of integer warnings

lasterr Last error message

lasterror Last error message and related
information

1-73

1 Functions — By Category

lastwarn Last warning message

rethrow Reissue error

try Attempt to execute block of code, and
catch errors

warning Warning message

MEX Programming

dbmex Enable MEX-file debugging

inmem Names of M-files, MEX-files, Java
classes in memory

mex Compile MEX-function from C or
Fortran source code

mexext MEX-filename extension

1-74

File I/O

File I/O

File Name Construction (p. 1-75) Get path, directory, filename
information; construct filenames

Opening, Loading, Saving Files
(p. 1-76)

Open files; transfer data between
files and MATLAB workspace

Memory Mapping (p. 1-76) Access file data via memory map
using MATLAB array indexing

Low-Level File I/O (p. 1-76) Low-level operations that use a file
identifier

Text Files (p. 1-77) Delimited or formatted I/O to text
files

XML Documents (p. 1-78) Documents written in Extensible
Markup Language

Spreadsheets (p. 1-78) Excel and Lotus 1-2-3 files

Scientific Data (p. 1-79) CDF, FITS, HDF formats

Audio and Audio/Video (p. 1-80) General audio functions;
SparcStation, WAVE, AVI files

Images (p. 1-82) Graphics files

Internet Exchange (p. 1-83) URL, FTP, zip, tar, and e-mail

To see a listing of file formats that are readable from MATLAB, go to file
formats.

File Name Construction

filemarker Character to separate file name and
internal function name

fileparts Parts of file name and path

filesep Directory separator for current
platform

fullfile Build full filename from parts

1-75

1 Functions — By Category

tempdir Name of system’s temporary
directory

tempname Unique name for temporary file

Opening, Loading, Saving Files

daqread Read Data Acquisition Toolbox (.daq)
file

filehandle Construct file handle object

importdata Load data from disk file

load Load workspace variables from disk

open Open files based on extension

save Save workspace variables to disk

uiimport Open Import Wizard to import data

winopen Open file in appropriate application
(Windows)

Memory Mapping

disp (memmapfile) Information about memmapfile
object

get (memmapfile) Memmapfile object properties

memmapfile Construct memmapfile object

Low-Level File I/O

fclose Close one or more open files

feof Test for end-of-file

ferror Query MATLAB about errors in file
input or output

1-76

File I/O

fgetl Read line from file, discarding
newline character

fgets Read line from file, keeping newline
character

fopen Open file, or obtain information
about open files

fprintf Write formatted data to file

fread Read binary data from file

frewind Move file position indicator to
beginning of open file

fscanf Read formatted data from file

fseek Set file position indicator

ftell File position indicator

fwrite Write binary data to file

Text Files

csvread Read comma-separated value file

csvwrite Write comma-separated value file

dlmread Read ASCII-delimited file of numeric
data into matrix

dlmwrite Write matrix to ASCII-delimited file

textread Read data from text file; write to
multiple outputs

textscan Read formatted data from text file
or string

1-77

1 Functions — By Category

XML Documents

xmlread Parse XML document and return
Document Object Model node

xmlwrite Serialize XML Document Object
Model node

xslt Transform XML document using
XSLT engine

Spreadsheets

Microsoft Excel Functions (p. 1-78) Read and write Microsoft Excel
spreadsheet

Lotus 1-2-3 Functions (p. 1-78) Read and write Lotus WK1
spreadsheet

Microsoft Excel Functions

xlsfinfo Determine whether file contains
Microsoft Excel (.xls) spreadsheet

xlsread Read Microsoft Excel spreadsheet
file (.xls)

xlswrite Write Microsoft Excel spreadsheet
file (.xls)

Lotus 1-2-3 Functions

wk1finfo Determine whether file contains
1-2-3 WK1 worksheet

wk1read Read Lotus 1-2-3 WK1 spreadsheet
file into matrix

wk1write Write matrix to Lotus 1-2-3 WK1
spreadsheet file

1-78

File I/O

Scientific Data

Common Data Format (CDF)
(p. 1-79)

Work with CDF files

Flexible Image Transport System
(p. 1-79)

Work with FITS files

Hierarchical Data Format (HDF)
(p. 1-80)

Work with HDF files

Band-Interleaved Data (p. 1-80) Work with band-interleaved files

Common Data Format (CDF)

cdfepoch Construct cdfepoch object for
Common Data Format (CDF) export

cdfinfo Information about Common Data
Format (CDF) file

cdfread Read data from Common Data
Format (CDF) file

cdfwrite Write data to Common Data Format
(CDF) file

todatenum Convert CDF epoch object to
MATLAB datenum

Flexible Image Transport System

fitsinfo Information about FITS file

fitsread Read data from FITS file

1-79

1 Functions — By Category

Hierarchical Data Format (HDF)

hdf Summary of MATLAB HDF4
capabilities

hdf5 Summary of MATLAB HDF5
capabilities

hdf5info Information about HDF5 file

hdf5read Read HDF5 file

hdf5write Write data to file in HDF5 format

hdfinfo Information about HDF4 or
HDF-EOS file

hdfread Read data from HDF4 or HDF-EOS
file

hdftool Browse and import data from HDF4
or HDF-EOS files

Band-Interleaved Data

multibandread Read band-interleaved data from
binary file

multibandwrite Write band-interleaved data to file

Audio and Audio/Video

General (p. 1-81) Create audio player object, obtain
information about multimedia files,
convert to/from audio signal

SPARCstation-Specific Sound
Functions (p. 1-81)

Access NeXT/SUN (.au) sound files

1-80

File I/O

Microsoft WAVE Sound Functions
(p. 1-81)

Access Microsoft WAVE (.wav) sound
files

Audio/Video Interleaved (AVI)
Functions (p. 1-82)

Access Audio/Video interleaved
(.avi) sound files

General

audioplayer Create audio player object

audiorecorder Create audio recorder object

beep Produce beep sound

lin2mu Convert linear audio signal to
mu-law

mmfileinfo Information about multimedia file

mu2lin Convert mu-law audio signal to
linear

sound Convert vector into sound

soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions

aufinfo Information about NeXT/SUN (.au)
sound file

auread Read NeXT/SUN (.au) sound file

auwrite Write NeXT/SUN (.au) sound file

Microsoft WAVE Sound Functions

wavfinfo Information about Microsoft WAVE
(.wav) sound file

wavplay Play recorded sound on PC-based
audio output device

1-81

1 Functions — By Category

wavread Read Microsoft WAVE (.wav) sound
file

wavrecord Record sound using PC-based audio
input device

wavwrite Write Microsoft WAVE (.wav) sound
file

Audio/Video Interleaved (AVI) Functions

addframe Add frame to Audio/Video
Interleaved (AVI) file

avifile Create new Audio/Video Interleaved
(AVI) file

aviinfo Information about Audio/Video
Interleaved (AVI) file

aviread Read Audio/Video Interleaved (AVI)
file

close (avifile) Close Audio/Video Interleaved (AVI)
file

movie2avi Create Audio/Video Interleaved
(AVI) movie from MATLAB movie

Images

exifread Read EXIF information from JPEG
and TIFF image files

im2java Convert image to Java image

imfinfo Information about graphics file

imread Read image from graphics file

imwrite Write image to graphics file

1-82

File I/O

Internet Exchange

URL, Zip, Tar, E-Mail (p. 1-83) Send e-mail, read from given URL,
extract from tar or zip file, compress
and decompress files

FTP Functions (p. 1-83) Connect to FTP server, download
from server, manage FTP files, close
server connection

URL, Zip, Tar, E-Mail

gunzip Uncompress GNU zip files

gzip Compress files into GNU zip files

sendmail Send e-mail message to address list

tar Compress files into tar file

untar Extract contents of tar file

unzip Extract contents of zip file

urlread Read content at URL

urlwrite Save contents of URL to file

zip Compress files into zip file

FTP Functions

ascii Set FTP transfer type to ASCII

binary Set FTP transfer type to binary

cd (ftp) Change current directory on FTP
server

close (ftp) Close connection to FTP server

delete (ftp) Remove file on FTP server

dir (ftp) Directory contents on FTP server

1-83

1 Functions — By Category

ftp Connect to FTP server, creating FTP
object

mget Download file from FTP server

mkdir (ftp) Create new directory on FTP server

mput Upload file or directory to FTP server

rename Rename file on FTP server

rmdir (ftp) Remove directory on FTP server

1-84

Graphics

Graphics

Basic Plots and Graphs (p. 1-85) Linear line plots, log and semilog
plots

Plotting Tools (p. 1-86) GUIs for interacting with plots

Annotating Plots (p. 1-86) Functions for and properties of titles,
axes labels, legends, mathematical
symbols

Specialized Plotting (p. 1-87) Bar graphs, histograms, pie charts,
contour plots, function plotters

Bit-Mapped Images (p. 1-91) Display image object, read and
write graphics file, convert to movie
frames

Printing (p. 1-91) Printing and exporting figures to
standard formats

Handle Graphics (p. 1-92) Creating graphics objects, setting
properties, finding handles

Basic Plots and Graphs

box Axes border

errorbar Plot error bars along curve

hold Retain current graph in figure

LineSpec Line specification string syntax

loglog Log-log scale plot

plot 2-D line plot

plot3 3-D line plot

plotyy 2-D line plots with y-axes on both
left and right side

polar Polar coordinate plot

1-85

1 Functions — By Category

semilogx, semilogy Semilogarithmic plots

subplot Create axes in tiled positions

Plotting Tools

figurepalette Show or hide figure palette

pan Pan view of graph interactively

plotbrowser Show or hide figure plot browser

plotedit Interactively edit and annotate plots

plottools Show or hide plot tools

propertyeditor Show or hide property editor

rotate3d Rotate 3-D view using mouse

showplottool Show or hide figure plot tool

zoom Turn zooming on or off or magnify
by factor

Annotating Plots

annotation Create annotation objects

clabel Contour plot elevation labels

datacursormode Enable or disable interactive data
cursor mode

datetick Date formatted tick labels

gtext Mouse placement of text in 2-D view

legend Graph legend for lines and patches

line Create line object

rectangle Create 2-D rectangle object

texlabel Produce TeX format from character
string

1-86

Graphics

title Add title to current axes

xlabel, ylabel, zlabel Label x-, y-, and z-axis

Specialized Plotting

Area, Bar, and Pie Plots (p. 1-87) 1-D, 2-D, and 3-D graphs and charts

Contour Plots (p. 1-88) Unfilled and filled contours in 2-D
and 3-D

Direction and Velocity Plots (p. 1-88) Comet, compass, feather and quiver
plots

Discrete Data Plots (p. 1-88) Stair, step, and stem plots

Function Plots (p. 1-88) Easy-to-use plotting utilities for
graphing functions

Histograms (p. 1-89) Plots for showing distributions of
data

Polygons and Surfaces (p. 1-89) Functions to generate and plot
surface patches in two or more
dimensions

Scatter/Bubble Plots (p. 1-90) Plots of point distributions

Animation (p. 1-90) Functions to create and play movies
of plots

Area, Bar, and Pie Plots

area Filled area 2-D plot

bar, barh Plot bar graph (vertical and
horizontal)

bar3, bar3h Plot 3-D bar chart

pareto Pareto chart

pie Pie chart

pie3 3-D pie chart

1-87

1 Functions — By Category

Contour Plots

contour Contour plot of matrix

contour3 3-D contour plot

contourc Low-level contour plot computation

contourf Filled 2-D contour plot

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

Direction and Velocity Plots

comet 2-D comet plot

comet3 3-D comet plot

compass Plot arrows emanating from origin

feather Plot velocity vectors

quiver Quiver or velocity plot

quiver3 3-D quiver or velocity plot

Discrete Data Plots

stairs Stairstep graph

stem Plot discrete sequence data

stem3 Plot 3-D discrete sequence data

Function Plots

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

ezmesh Easy-to-use 3-D mesh plotter

1-88

Graphics

ezmeshc Easy-to-use combination
mesh/contour plotter

ezplot Easy-to-use function plotter

ezplot3 Easy-to-use 3-D parametric curve
plotter

ezpolar Easy-to-use polar coordinate plotter

ezsurf Easy-to-use 3-D colored surface
plotter

ezsurfc Easy-to-use combination
surface/contour plotter

fplot Plot function between specified
limits

Histograms

hist Histogram plot

histc Histogram count

rose Angle histogram plot

Polygons and Surfaces

convhull Convex hull

cylinder Generate cylinder

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

ellipsoid Generate ellipsoid

1-89

1 Functions — By Category

fill Filled 2-D polygons

fill3 Filled 3-D polygons

inpolygon Points inside polygonal region

pcolor Pseudocolor (checkerboard) plot

polyarea Area of polygon

rectint Rectangle intersection area

ribbon Ribbon plot

slice Volumetric slice plot

sphere Generate sphere

tsearch Search for enclosing Delaunay
triangle

tsearchn N-D closest simplex search

voronoi Voronoi diagram

waterfall Waterfall plot

Scatter/Bubble Plots

plotmatrix Scatter plot matrix

scatter Scatter plot

scatter3 3-D scatter plot

Animation

frame2im Convert movie frame to indexed
image

getframe Capture movie frame

im2frame Convert image to movie frame

1-90

Graphics

movie Play recorded movie frames

noanimate Change EraseMode of all objects to
normal

Bit-Mapped Images

frame2im Convert movie frame to indexed
image

im2frame Convert image to movie frame

im2java Convert image to Java image

image Display image object

imagesc Scale data and display image object

imfinfo Information about graphics file

imformats Manage image file format registry

imread Read image from graphics file

imwrite Write image to graphics file

ind2rgb Convert indexed image to RGB
image

Printing

frameedit Edit print frames for Simulink and
Stateflow block diagrams

hgexport Export figure

orient Hardcopy paper orientation

print, printopt Print figure or save to file and
configure printer defaults

printdlg Print dialog box

1-91

1 Functions — By Category

printpreview Preview figure to print

saveas Save figure or Simulink block
diagram using specified format

Handle Graphics

Finding and Identifying Graphics
Objects (p. 1-92)

Find and manipulate graphics
objects via their handles

Object Creation Functions (p. 1-93) Constructors for core graphics
objects

Plot Objects (p. 1-93) Property descriptions for plot objects

Figure Windows (p. 1-94) Control and save figures

Axes Operations (p. 1-95) Operate on axes objects

Operating on Object Properties
(p. 1-95)

Query, set, and link object properties

Finding and Identifying Graphics Objects

allchild Find all children of specified objects

ancestor Ancestor of graphics object

copyobj Copy graphics objects and their
descendants

delete Remove files or graphics objects

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gca Current axes handle

gcbf Handle of figure containing object
whose callback is executing

1-92

Graphics

gcbo Handle of object whose callback is
executing

gco Handle of current object

get Query object properties

ishandle Is object handle valid

propedit Open Property Editor

set Set object properties

Object Creation Functions

axes Create axes graphics object

figure Create figure graphics object

hggroup Create hggroup object

hgtransform Create hgtransform graphics object

image Display image object

light Create light object

line Create line object

patch Create patch graphics object

rectangle Create 2-D rectangle object

root object Root object properties

surface Create surface object

text Create text object in current axes

uicontextmenu Create context menu

Plot Objects

Annotation Arrow Properties Define annotation arrow properties

Annotation Doublearrow Properties Define annotation doublearrow
properties

1-93

1 Functions — By Category

Annotation Ellipse Properties Define annotation ellipse properties

Annotation Line Properties Define annotation line properties

Annotation Rectangle Properties Define annotation rectangle
properties

Annotation Textarrow Properties Define annotation textarrow
properties

Annotation Textbox Properties Define annotation textbox properties

Areaseries Properties Define areaseries properties

Barseries Properties Define barseries properties

Contourgroup Properties Define contourgroup properties

Errorbarseries Properties Define errorbarseries properties

Image Properties Define image properties

Lineseries Properties Define lineseries properties

Quivergroup Properties Define quivergroup properties

Scattergroup Properties Define scattergroup properties

Stairseries Properties Define stairseries properties

Stemseries Properties Define stemseries properties

Surfaceplot Properties Define surfaceplot properties

Figure Windows

clf Clear current figure window

close Remove specified figure

closereq Default figure close request function

drawnow Complete pending drawing events

gcf Current figure handle

hgload Load Handle Graphics object
hierarchy from file

1-94

Graphics

hgsave Save Handle Graphics object
hierarchy to file

newplot Determine where to draw graphics
objects

opengl Control OpenGL rendering

refresh Redraw current figure

saveas Save figure or Simulink block
diagram using specified format

Axes Operations

axis Axis scaling and appearance

box Axes border

cla Clear current axes

gca Current axes handle

grid Grid lines for 2-D and 3-D plots

ishold Current hold state

makehgtform Create 4-by-4 transform matrix

Operating on Object Properties

get Query object properties

linkaxes Synchronize limits of specified 2-D
axes

linkprop Keep same value for corresponding
properties

refreshdata Refresh data in graph when data
source is specified

set Set object properties

1-95

1 Functions — By Category

3-D Visualization

Surface and Mesh Plots (p. 1-96) Plot matrices, visualize functions of
two variables, specify colormap

View Control (p. 1-98) Control the camera viewpoint,
zooming, rotation, aspect ratio, set
axis limits

Lighting (p. 1-100) Add and control scene lighting

Transparency (p. 1-100) Specify and control object
transparency

Volume Visualization (p. 1-101) Visualize gridded volume data

Surface and Mesh Plots

Creating Surfaces and Meshes
(p. 1-96)

Visualizing gridded and triangulated
data as lines and surfaces

Domain Generation (p. 1-97) Gridding data and creating arrays

Color Operations (p. 1-97) Specifying, converting, and
manipulating color spaces,
colormaps, colorbars, and
backgrounds

Colormaps (p. 1-98) Built-in colormaps you can use

Creating Surfaces and Meshes

hidden Remove hidden lines from mesh plot

mesh, meshc, meshz Mesh plots

peaks Example function of two variables

surf, surfc 3-D shaded surface plot

surface Create surface object

surfl Surface plot with colormap-based
lighting

1-96

3-D Visualization

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

Domain Generation

griddata Data gridding

meshgrid Generate X and Y arrays for 3-D plots

Color Operations

brighten Brighten or darken colormap

caxis Color axis scaling

colorbar Colorbar showing color scale

colordef Set default property values to
display different color schemes

colormap Set and get current colormap

colormapeditor Start colormap editor

ColorSpec Color specification

graymon Set default figure properties for
grayscale monitors

hsv2rgb Convert HSV colormap to RGB
colormap

rgb2hsv Convert RGB colormap to HSV
colormap

rgbplot Plot colormap

shading Set color shading properties

spinmap Spin colormap

1-97

1 Functions — By Category

surfnorm Compute and display 3-D surface
normals

whitebg Change axes background color

Colormaps

contrast Grayscale colormap for contrast
enhancement

View Control

Controlling the Camera Viewpoint
(p. 1-98)

Orbiting, dollying, pointing, rotating
camera positions and setting fields
of view

Setting the Aspect Ratio and Axis
Limits (p. 1-99)

Specifying what portions of axes to
view and how to scale them

Object Manipulation (p. 1-99) Panning, rotating, and zooming
views

Selecting Region of Interest (p. 1-100) Interactively identifying rectangular
regions

Controlling the Camera Viewpoint

camdolly Move camera position and target

cameratoolbar Control camera toolbar
programmatically

camlookat Position camera to view object or
group of objects

camorbit Rotate camera position around
camera target

campan Rotate camera target around camera
position

1-98

3-D Visualization

campos Set or query camera position

camproj Set or query projection type

camroll Rotate camera about view axis

camtarget Set or query location of camera
target

camup Set or query camera up vector

camva Set or query camera view angle

camzoom Zoom in and out on scene

makehgtform Create 4-by-4 transform matrix

view Viewpoint specification

viewmtx View transformation matrices

Setting the Aspect Ratio and Axis Limits

daspect Set or query axes data aspect ratio

pbaspect Set or query plot box aspect ratio

xlim, ylim, zlim Set or query axis limits

Object Manipulation

pan Pan view of graph interactively

reset Reset graphics object properties to
their defaults

rotate Rotate object in specified direction

rotate3d Rotate 3-D view using mouse

selectmoveresize Select, move, resize, or copy axes and
uicontrol graphics objects

zoom Turn zooming on or off or magnify
by factor

1-99

1 Functions — By Category

Selecting Region of Interest

dragrect Drag rectangles with mouse

rbbox Create rubberband box for area
selection

Lighting

camlight Create or move light object in camera
coordinates

diffuse Calculate diffuse reflectance

light Create light object

lightangle Create or position light object in
spherical coordinates

lighting Specify lighting algorithm

material Control reflectance properties of
surfaces and patches

specular Calculate specular reflectance

Transparency

alim Set or query axes alpha limits

alpha Set transparency properties for
objects in current axes

alphamap Specify figure alphamap
(transparency)

1-100

3-D Visualization

Volume Visualization

coneplot Plot velocity vectors as cones in 3-D
vector field

contourslice Draw contours in volume slice planes

curl Compute curl and angular velocity
of vector field

divergence Compute divergence of vector field

flow Simple function of three variables

interpstreamspeed Interpolate stream-line vertices from
flow speed

isocaps Compute isosurface end-cap
geometry

isocolors Calculate isosurface and patch colors

isonormals Compute normals of isosurface
vertices

isosurface Extract isosurface data from volume
data

reducepatch Reduce number of patch faces

reducevolume Reduce number of elements in
volume data set

shrinkfaces Reduce the size of patch faces

slice Volumetric slice plot

smooth3 Smooth 3-D data

stream2 Compute 2-D streamline data

stream3 Compute 3-D streamline data

streamline Plot streamlines from 2-D or 3-D
vector data

streamparticles Plot stream particles

streamribbon 3-D stream ribbon plot from vector
volume data

1-101

1 Functions — By Category

streamslice Plot streamlines in slice planes

streamtube Create 3-D stream tube plot

subvolume Extract subset of volume data set

surf2patch Convert surface data to patch data

volumebounds Coordinate and color limits for
volume data

1-102

Creating Graphical User Interfaces

Creating Graphical User Interfaces

Predefined Dialog Boxes (p. 1-103) Dialog boxes for error, user input,
waiting, etc.

Deploying User Interfaces (p. 1-104) Launch GUIs, create the handles
structure

Developing User Interfaces (p. 1-104) Start GUIDE, manage application
data, get user input

User Interface Objects (p. 1-105) Create GUI components

Finding Objects from Callbacks
(p. 1-106)

Find object handles from within
callbacks functions

GUI Utility Functions (p. 1-106) Move objects, wrap text

Controlling Program Execution
(p. 1-107)

Wait and resume based on user input

Predefined Dialog Boxes

dialog Create and display dialog box

errordlg Create and open error dialog box

export2wsdlg Export variables to workspace

helpdlg Create and open help dialog box

inputdlg Create and open input dialog box

listdlg Create and open list-selection dialog
box

msgbox Create and open message box

printdlg Print dialog box

printpreview Preview figure to print

questdlg Create and open question dialog box

uigetdir Open standard dialog box for
selecting a directory

1-103

1 Functions — By Category

uigetfile Open standard dialog box for
retrieving files

uigetpref Open dialog box for retrieving
preferences

uiopen Open file selection dialog box with
appropriate file filters

uiputfile Open standard dialog box for saving
files

uisave Open standard dialog box for saving
workspace variables

uisetcolor Open standard dialog box for setting
object’s ColorSpec

uisetfont Open standard dialog box for setting
object’s font characteristics

waitbar Open waitbar

warndlg Open warning dialog box

Deploying User Interfaces

guidata Store or retrieve GUI data

guihandles Create structure of handles

movegui Move GUI figure to specified location
on screen

openfig Open new copy or raise existing copy
of saved figure

Developing User Interfaces

addpref Add preference

getappdata Value of application-defined data

getpref Preference

1-104

Creating Graphical User Interfaces

ginput Graphical input from mouse or
cursor

guidata Store or retrieve GUI data

guide Open GUI Layout Editor

inspect Open Property Inspector

isappdata True if application-defined data
exists

ispref Test for existence of preference

rmappdata Remove application-defined data

rmpref Remove preference

setappdata Specify application-defined data

setpref Set preference

uigetpref Open dialog box for retrieving
preferences

uisetpref Manage preferences used in
uigetpref

waitfor Wait for condition before resuming
execution

waitforbuttonpress Wait for key press or mouse-button
click

User Interface Objects

menu Generate menu of choices for user
input

uibuttongroup Create container object to exclusively
manage radio buttons and toggle
buttons

uicontextmenu Create context menu

uicontrol Create user interface control object

1-105

1 Functions — By Category

uimenu Create menus on figure windows

uipanel Create panel container object

uipushtool Create push button on toolbar

uitoggletool Create toggle button on toolbar

uitoolbar Create toolbar on figure

Finding Objects from Callbacks

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gcbf Handle of figure containing object
whose callback is executing

gcbo Handle of object whose callback is
executing

GUI Utility Functions

align Align user interface controls
(uicontrols) and axes

getpixelposition Get component position in pixels

listfonts List available system fonts

selectmoveresize Select, move, resize, or copy axes and
uicontrol graphics objects

setpixelposition Set component position in pixels

textwrap Wrapped string matrix for given
uicontrol

uistack Reorder visual stacking order of
objects

1-106

Creating Graphical User Interfaces

Controlling Program Execution

uiresume, uiwait Control program execution

1-107

1 Functions — By Category

External Interfaces

Dynamic Link Libraries (p. 1-108) Access functions stored in external
shared library (.dll) files

Java (p. 1-109) Work with objects constructed from
Java API and third-party class
packages

Component Object Model and
ActiveX (p. 1-110)

Integrate COM components into
your application

Dynamic Data Exchange (p. 1-112) Communicate between applications
by establishing a DDE conversation

Web Services (p. 1-113) Communicate between applications
over a network using SOAP and
WSDL

Serial Port Devices (p. 1-113) Read and write to devices connected
to your computer’s serial port

See also C and Fortran Function Reference for C and Fortran functions you
can use in external routines that interact with MATLAB programs and the
data in MATLAB workspaces.

Dynamic Link Libraries

calllib Call function in external library

libfunctions Information on functions in external
library

libfunctionsview Create window displaying
information on functions in external
library

libisloaded Determine whether external library
is loaded

libpointer Create pointer object for use with
external libraries

1-108

External Interfaces

libstruct Construct structure as defined in
external library

loadlibrary Load external library into MATLAB

unloadlibrary Unload external library from
memory

Java

class Create object or return class of object

fieldnames Field names of structure, or public
fields of object

import Add package or class to current Java
import list

inspect Open Property Inspector

isa Determine whether input is object
of given class

isjava Determine whether input is Java
object

ismethod Determine whether input is object
method

isprop Determine whether input is object
property

javaaddpath Add entries to dynamic Java class
path

javaArray Construct Java array

javachk Generate error message based on
Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

1-109

1 Functions — By Category

javarmpath Remove entries from dynamic Java
class path

methods Information on class methods

methodsview Information on class methods in
separate window

usejava Determine whether Java feature is
supported in MATLAB

Component Object Model and ActiveX

actxcontrol Create ActiveX control in figure
window

actxcontrollist List all currently installed ActiveX
controls

actxcontrolselect Open GUI to create ActiveX control

actxGetRunningServer Get handle to running instance of
Automation server

actxserver Create COM server

addproperty Add custom property to object

class Create object or return class of object

delete (COM) Remove COM control or server

deleteproperty Remove custom property from object

enableservice Enable, disable, or report status
of Automation server; enable DDE
server

eventlisteners List of events attached to listeners

events List of events control can trigger

Execute Execute MATLAB command in
server

Feval (COM) Evaluate MATLAB function in
server

1-110

External Interfaces

fieldnames Field names of structure, or public
fields of object

get (COM) Get property value from interface, or
display properties

GetCharArray Get character array from server

GetFullMatrix Get matrix from server

GetVariable Get data from variable in server
workspace

GetWorkspaceData Get data from server workspace

inspect Open Property Inspector

interfaces List custom interfaces to COM server

invoke Invoke method on object or interface,
or display methods

isa Determine whether input is object
of given class

iscom Is input COM object

isevent Is input event

isinterface Is input COM interface

ismethod Determine whether input is object
method

isprop Determine whether input is object
property

load (COM) Initialize control object from file

MaximizeCommandWindow Open server window on Windows
desktop

methods Information on class methods

methodsview Information on class methods in
separate window

MinimizeCommandWindow Minimize size of server window

1-111

1 Functions — By Category

move Move or resize control in parent
window

propedit (COM) Open built-in property page for
control

PutCharArray Store character array in server

PutFullMatrix Store matrix in server

PutWorkspaceData Store data in server workspace

Quit (COM) Terminate MATLAB server

registerevent Register event handler with control’s
event

release Release interface

save (COM) Serialize control object to file

send Return list of events control can
trigger

set (COM) Set object or interface property to
specified value

unregisterallevents Unregister all events for control

unregisterevent Unregister event handler with
control’s event

Dynamic Data Exchange

ddeadv Set up advisory link

ddeexec Send string for execution

ddeinit Initiate Dynamic Data Exchange
(DDE) conversation

ddepoke Send data to application

ddereq Request data from application

1-112

External Interfaces

ddeterm Terminate Dynamic Data Exchange
(DDE) conversation

ddeunadv Release advisory link

Web Services

callSoapService Send SOAP message off to endpoint

createClassFromWsdl Create MATLAB object based on
WSDL file

createSoapMessage Create SOAP message to send to
server

parseSoapResponse Convert response string from SOAP
server into MATLAB data types

Serial Port Devices

clear (serial) Remove serial port object from
MATLAB workspace

delete (serial) Remove serial port object from
memory

disp (serial) Serial port object summary
information

fclose (serial) Disconnect serial port object from
device

fgetl (serial) Read line of text from device and
discard terminator

fgets (serial) Read line of text from device and
include terminator

fopen (serial) Connect serial port object to device

fprintf (serial) Write text to device

fread (serial) Read binary data from device

1-113

1 Functions — By Category

fscanf (serial) Read data from device, and format
as text

fwrite (serial) Write binary data to device

get (serial) Serial port object properties

instrcallback Event information when event
occurs

instrfind Read serial port objects from memory
to MATLAB workspace

instrfindall Find visible and hidden serial port
objects

isvalid (serial) Determine whether serial port
objects are valid

length (serial) Length of serial port object array

load (serial) Load serial port objects and variables
into MATLAB workspace

readasync Read data asynchronously from
device

record Record data and event information
to file

save (serial) Save serial port objects and variables
to MAT-file

serial Create serial port object

serialbreak Send break to device connected to
serial port

set (serial) Configure or display serial port
object properties

size (serial) Size of serial port object array

stopasync Stop asynchronous read and write
operations

1-114

2

Functions — Alphabetical
List

Arithmetic Operators + - * / \ ^ ’
Relational Operators < > <= >= == ~=
Logical Operators: Elementwise & | ~
Logical Operators: Short-circuit && ||
Special Characters [] () {} = ’ , ; : % ! @
colon (:)
abs
accumarray
acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
actxcontrol
actxcontrollist
actxcontrolselect
actxGetRunningServer
actxserver
addevent
addframe
addOptional (inputParser)
addParamValue (inputParser)

2 Functions — Alphabetical List

addpath
addpref
addproperty
addRequired (inputParser)
addsample
addsampletocollection
addtodate
addts
airy
align
alim
all
allchild
alpha
alphamap
amd
ancestor
and
angle
annotation
Annotation Arrow Properties
Annotation Doublearrow Properties
Annotation Ellipse Properties
Annotation Line Properties
Annotation Rectangle Properties
Annotation Textarrow Properties
Annotation Textbox Properties
ans
any
area
Areaseries Properties
arrayfun
ascii
asec
asecd
asech
asin

2-2

asind
asinh
assert
assignin
atan
atan2
atand
atanh
audioplayer
audiorecorder
aufinfo
auread
auwrite
avifile
aviinfo
aviread
axes
Axes Properties
axis
balance
bar, barh
bar3, bar3h
Barseries Properties
base2dec
beep
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaln
bicg
bicgstab
bin2dec
binary

2-3

2 Functions — Alphabetical List

bitand
bitcmp
bitget
bitmax
bitor
bitset
bitshift
bitxor
blanks
blkdiag
box
break
brighten
builddocsearchdb
builtin
bsxfun
bvp4c
bvpget
bvpinit
bvpset
bvpxtend
calendar
calllib
callSoapService
camdolly
cameratoolbar
camlight
camlookat
camorbit
campan
campos
camproj
camroll
camtarget
camup
camva
camzoom

2-4

cart2pol
cart2sph
case
cast
cat
catch
caxis
cd
cd (ftp)
cdf2rdf
cdfepoch
cdfinfo
cdfread
cdfwrite
ceil
cell
cell2mat
cell2struct
celldisp
cellfun
cellplot
cellstr
cgs
char
checkin
checkout
chol
cholinc
cholupdate
circshift
cla
clabel
class
clc
clear
clear (serial)
clf

2-5

2 Functions — Alphabetical List

clipboard
clock
close
close (avifile)
close (ftp)
closereq
cmopts
colamd
colmmd
colorbar
colordef
colormap
colormapeditor
ColorSpec
colperm
comet
comet3
commandhistory
commandwindow
compan
compass
complex
computer
cond
condeig
condest
coneplot
conj
continue
contour
contour3
contourc
contourf
Contourgroup Properties
contourslice
contrast
conv

2-6

conv2
convhull
convhulln
convn
copyfile
copyobj
corrcoef
cos
cosd
cosh
cot
cotd
coth
cov
cplxpair
cputime
createClassFromWsdl
createCopy (inputParser)
createSoapMessage
cross
csc
cscd
csch
csvread
csvwrite
ctranspose (timeseries)
cumprod
cumsum
cumtrapz
curl
customverctrl
cylinder
daqread
daspect
datacursormode
datatipinfo
date

2-7

2 Functions — Alphabetical List

datenum
datestr
datetick
datevec
dbclear
dbcont
dbdown
dblquad
dbmex
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
dde23
ddeadv
ddeexec
ddeget
ddeinit
ddepoke
ddereq
ddesd
ddeset
ddeterm
ddeunadv
deal
deblank
debug
dec2base
dec2bin
dec2hex
decic
deconv
del2
delaunay

2-8

delaunay3
delaunayn
delete
delete (COM)
delete (ftp)
delete (serial)
delete (timer)
deleteproperty
delevent
delsample
delsamplefromcollection
demo
depdir
depfun
det
detrend
detrend (timeseries)
deval
diag
dialog
diary
diff
diffuse
dir
dir (ftp)
disp
disp (serial)
disp (timer)
display
divergence
dlmread
dlmwrite
dmperm
doc
docopt
docsearch
dos

2-9

2 Functions — Alphabetical List

dot
double
dragrect
drawnow
dsearch
dsearchn
echo
echodemo
edit
eig
eigs
ellipj
ellipke
ellipsoid
else
elseif
enableservice
end
eomday
eps
eq
erf, erfc, erfcx, erfinv, erfcinv
error
errorbar
Errorbarseries Properties
errordlg
etime
etree
etreeplot
eval
evalc
evalin
eventlisteners
events
Execute
exifread
exist

2-10

exit
exp
expint
expm
expm1
export2wsdlg
eye
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
factor
factorial
false
fclose
fclose (serial)
feather
feof
ferror
feval
Feval (COM)
fft
fft2
fftn
fftshift
fftw
fgetl
fgetl (serial)
fgets
fgets (serial)
fieldnames
figure

2-11

2 Functions — Alphabetical List

Figure Properties
figurepalette
fileattrib
filebrowser
File Formats
filemarker
fileparts
filehandle
filesep
fill
fill3
filter
filter (timeseries)
filter2
find
findall
findfigs
findobj
findstr
finish
fitsinfo
fitsread
fix
flipdim
fliplr
flipud
floor
flops
flow
fminbnd
fminsearch
fopen
fopen (serial)
for
format
fplot
fprintf

2-12

fprintf (serial)
frame2im
frameedit
fread
fread (serial)
freqspace
frewind
fscanf
fscanf (serial)
fseek
ftell
ftp
full
fullfile
func2str
function
function_handle (@)
functions
funm
fwrite
fwrite (serial)
fzero
gallery
gamma, gammainc, gammaln
gca
gcbf
gcbo
gcd
gcf
gco
ge
genpath
genvarname
get
get (COM)
get (serial)
get (timer)

2-13

2 Functions — Alphabetical List

get (timeseries)
get (tscollection)
getabstime (timeseries)
getabstime (tscollection)
getappdata
GetCharArray
getdatasamplesize
getenv
getfield
getframe
GetFullMatrix
getinterpmethod
getpixelposition
getpref
getqualitydesc
getsampleusingtime (timeseries)
getsampleusingtime (tscollection)
gettimeseriesnames
gettsafteratevent
gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent
gettsbetweenevents
GetVariable
GetWorkspaceData
ginput
global
gmres
gplot
grabcode
gradient
graymon
grid
griddata
griddata3
griddatan

2-14

gsvd
gt
gtext
guidata
guide
guihandles
gunzip
gzip
hadamard
hankel
hdf
hdf5
hdf5info
hdf5read
hdf5write
hdfinfo
hdfread
hdftool
help
helpbrowser
helpdesk
helpdlg
helpwin
hess
hex2dec
hex2num
hgexport
hggroup
Hggroup Properties
hgload
hgsave
hgtransform
Hgtransform Properties
hidden
hilb
hist
histc

2-15

2 Functions — Alphabetical List

hold
home
horzcat
horzcat (tscollection)
hostid
hsv2rgb
hypot
i
idealfilter (timeseries)
idivide
if
ifft
ifft2
ifftn
ifftshift
ilu
im2frame
im2java
imag
image
Image Properties
imagesc
imfinfo
imformats
import
importdata
imread
imwrite
ind2rgb
ind2sub
Inf
inferiorto
info
inline
inmem
inpolygon
input

2-16

inputdlg
inputname
inputParser
inspect
instrcallback
instrfind
instrfindall
int2str
int8, int16, int32, int64
interfaces
interp1
interp1q
interp2
interp3
interpft
interpn
interpstreamspeed
intersect
intmax
intmin
intwarning
inv
invhilb
invoke
ipermute
iqr (timeseries)
is*
isa
isappdata
iscell
iscellstr
ischar
iscom
isdir
isempty
isempty (timeseries)
isempty (tscollection)

2-17

2 Functions — Alphabetical List

isequal
isequalwithequalnans
isevent
isfield
isfinite
isfloat
isglobal
ishandle
ishold
isinf
isinteger
isinterface
isjava
iskeyword
isletter
islogical
ismac
ismember
ismethod
isnan
isnumeric
isobject
isocaps
isocolors
isonormals
isosurface
ispc
ispref
isprime
isprop
isreal
isscalar
issorted
isspace
issparse
isstr
isstrprop

2-18

isstruct
isstudent
isunix
isvalid (serial)
isvalid (timer)
isvarname
isvector
j
javaaddpath
javaArray
javachk
javaclasspath
javaMethod
javaObject
javarmpath
keyboard
kron
lasterr
lasterror
lastwarn
lcm
ldl
ldivide, rdivide
le
legend
legendre
length
length (serial)
length (timeseries)
length (tscollection)
libfunctions
libfunctionsview
libisloaded
libpointer
libstruct
license
light

2-19

2 Functions — Alphabetical List

Light Properties
lightangle
lighting
lin2mu
line
Line Properties
Lineseries Properties
LineSpec
linkaxes
linkprop
linsolve
linspace
listdlg
listfonts
load
load (COM)
load (serial)
loadlibrary
loadobj
log
log10
log1p
log2
logical
loglog
logm
logspace
lookfor
lower
ls
lscov
lsqnonneg
lsqr
lt
lu
luinc
magic

2-20

makehgtform
mat2cell
mat2str
material
matlabcolon (matlab:)
matlabrc
matlabroot
matlab (UNIX)
matlab (Windows)
max
max (timeseries)
MaximizeCommandWindow
mean
mean (timeseries)
median
median (timeseries)
disp (memmapfile)
get (memmapfile)
memmapfile
memory
menu
mesh, meshc, meshz
meshgrid
methods
methodsview
mex
mexext
mfilename
mget
min
min (timeseries)
MinimizeCommandWindow
minres
mislocked
mkdir
mkdir (ftp)
mkpp

2-21

2 Functions — Alphabetical List

mldivide \, mrdivide /
mlint
mlintrpt
mlock
mmfileinfo
mod
mode
more
move
movefile
movegui
movie
movie2avi
mput
msgbox
mtimes
mu2lin
multibandread
multibandwrite
munlock
namelengthmax
NaN
nargchk
nargin, nargout
nargoutchk
native2unicode
nchoosek
ndgrid
ndims
ne
newplot
nextpow2
nnz
noanimate
nonzeros
norm
normest

2-22

not
notebook
now
nthroot
null
num2cell
num2hex
num2str
numel
nzmax
ode15i
ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb
odefile
odeget
odeset
odextend
ones
open
openfig
opengl
openvar
optimget
optimset
or
ordeig
orderfields
ordqz
ordschur
orient
orth
otherwise
pack
pagesetupdlg
pan
pareto
parse (inputParser)
parseSoapResponse

2-23

2 Functions — Alphabetical List

partialpath
pascal
patch
Patch Properties
path
path2rc
pathdef
pathsep
pathtool
pause
pbaspect
pcg
pchip
pcode
pcolor
pdepe
pdeval
peaks
perl
perms
permute
persistent
pi
pie
pie3
pinv
planerot
playshow
plot
plot (timeseries)
plot3
plotbrowser
plotedit
plotmatrix
plottools
plotyy
pol2cart

2-24

polar
poly
polyarea
polyder
polyeig
polyfit
polyint
polyval
polyvalm
pow2
power
ppval
prefdir
preferences
primes
print, printopt
printdlg
printpreview
prod
profile
profsave
propedit
propedit (COM)
propertyeditor
psi
publish
PutCharArray
PutFullMatrix
PutWorkspaceData
pwd
qmr
qr
qrdelete
qrinsert
qrupdate
quad
quadl

2-25

2 Functions — Alphabetical List

quadv
questdlg
quit
Quit (COM)
quiver
quiver3
Quivergroup Properties
qz
rand
randn
randperm
rank
rat, rats
rbbox
rcond
readasync
real
reallog
realmax
realmin
realpow
realsqrt
record
rectangle
Rectangle Properties
rectint
recycle
reducepatch
reducevolume
refresh
refreshdata
regexp, regexpi
regexprep
regexptranslate
registerevent
rehash
release

2-26

rem
removets
rename
repmat
resample (timeseries)
resample (tscollection)
reset
reshape
residue
restoredefaultpath
rethrow
return
rgb2hsv
rgbplot
ribbon
rmappdata
rmdir
rmdir (ftp)
rmfield
rmpath
rmpref
root object
Root Properties
roots
rose
rosser
rot90
rotate
rotate3d
round
rref
rsf2csf
run
save
save (COM)
save (serial)
saveas

2-27

2 Functions — Alphabetical List

saveobj
savepath
scatter
scatter3
Scattergroup Properties
schur
script
sec
secd
sech
selectmoveresize
semilogx, semilogy
send
sendmail
serial
serialbreak
set
set (COM)
set (serial)
set (timer)
set (timeseries)
set (tscollection)
setabstime (timeseries)
setabstime (tscollection)
setappdata
setdiff
setenv
setfield
setinterpmethod
setpixelposition
setpref
setstr
settimeseriesnames
setxor
shading
shiftdim
showplottool

2-28

shrinkfaces
sign
sin
sind
single
sinh
size
size (serial)
size (timeseries)
size (tscollection)
slice
smooth3
sort
sortrows
sound
soundsc
spalloc
sparse
spaugment
spconvert
spdiags
specular
speye
spfun
sph2cart
sphere
spinmap
spline
spones
spparms
sprand
sprandn
sprandsym
sprank
sprintf
spy
sqrt

2-29

2 Functions — Alphabetical List

sqrtm
squeeze
ss2tf
sscanf
stairs
Stairseries Properties
start
startat
startup
std
std (timeseries)
stem
stem3
Stemseries Properties
stop
stopasync
str2double
str2func
str2mat
str2num
strcat
strcmp, strcmpi
stream2
stream3
streamline
streamparticles
streamribbon
streamslice
streamtube
strfind
strings
strjust
strmatch
strncmp, strncmpi
strread
strrep
strtok

2-30

strtrim
struct
struct2cell
structfun
strvcat
sub2ind
subplot
subsasgn
subsindex
subspace
subsref
substruct
subvolume
sum
sum (timeseries)
superiorto
support
surf, surfc
surf2patch
surface
Surface Properties
Surfaceplot Properties
surfl
surfnorm
svd
svds
swapbytes
switch
symamd
symbfact
symmlq
symmmd
symrcm
symvar
synchronize
syntax
system

2-31

2 Functions — Alphabetical List

tan
tand
tanh
tar
tempdir
tempname
tetramesh
texlabel
text
Text Properties
textread
textscan
textwrap
tic, toc
timer
timerfind
timerfindall
timeseries
title
todatenum
toeplitz
toolboxdir
trace
transpose (timeseries)
trapz
treelayout
treeplot
tril
trimesh
triplequad
triplot
trisurf
triu
true
try
tscollection
tsdata.event

2-32

tsearch
tsearchn
tsprops
tstool
type
typecast
uibuttongroup
Uibuttongroup Properties
uicontextmenu
Uicontextmenu Properties
uicontrol
Uicontrol Properties
uigetdir
uigetfile
uigetpref
uiimport
uimenu
Uimenu Properties
uint8, uint16, uint32, uint64
uiopen
uipanel
Uipanel Properties
uipushtool
Uipushtool Properties
uiputfile
uiresume, uiwait
uisave
uisetcolor
uisetfont
uisetpref
uistack
uitoggletool
Uitoggletool Properties
uitoolbar
Uitoolbar Properties
undocheckout
unicode2native

2-33

2 Functions — Alphabetical List

union
unique
unix
unloadlibrary
unmkpp
unregisterallevents
unregisterevent
untar
unwrap
unzip
upper
urlread
urlwrite
usejava
vander
var
var (timeseries)
varargin
varargout
vectorize
ver
verctrl
verLessThan
version
vertcat
vertcat (timeseries)
vertcat (tscollection)
view
viewmtx
volumebounds
voronoi
voronoin
wait
waitbar
waitfor
waitforbuttonpress
warndlg

2-34

warning
waterfall
wavfinfo
wavplay
wavread
wavrecord
wavwrite
web
weekday
what
whatsnew
which
while
whitebg
who, whos
wilkinson
winopen
winqueryreg
wk1finfo
wk1read
wk1write
workspace
xlabel, ylabel, zlabel
xlim, ylim, zlim
xlsfinfo
xlsread
xlswrite
xmlread
xmlwrite
xor
xslt
zeros
zip
zoom

2-35

Arithmetic Operators + - * / \ ^ ’

Purpose Matrix and array arithmetic

Syntax A+B
A-B
A*B
A.*B
A/B
A./B
A\B
A.\B
A^B
A.^B
A'
A.'

Description MATLAB has two different types of arithmetic operations. Matrix
arithmetic operations are defined by the rules of linear algebra.
Array arithmetic operations are carried out element by element, and
can be used with multidimensional arrays. The period character
(.) distinguishes the array operations from the matrix operations.
However, since the matrix and array operations are the same for
addition and subtraction, the character pairs .+ and .- are not used.

+ Addition or unary plus. A+B adds A and B. A and B must have
the same size, unless one is a scalar. A scalar can be added
to a matrix of any size.

- Subtraction or unary minus. A-B subtracts B from A. A and B
must have the same size, unless one is a scalar. A scalar can
be subtracted from a matrix of any size.

2-36

Arithmetic Operators + - * / \ ^ ’

* Matrix multiplication. C = A*B is the linear algebraic product
of the matrices A and B. More precisely,

C i j A i k B k j
k

n
(,) (,) (,)=

=
∑

1

For nonscalar A and B, the number of columns of A must equal
the number of rows of B. A scalar can multiply a matrix of
any size.

.* Array multiplication. A.*B is the element-by-element product
of the arrays A and B. A and B must have the same size, unless
one of them is a scalar.

/ Slash or matrix right division. B/A is roughly the same as
B*inv(A). More precisely, B/A = (A'\B')'. See the reference
page for mrdivide for more information.

./ Array right division. A./B is the matrix with elements
A(i,j)/B(i,j). A and B must have the same size, unless one
of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B
is roughly the same as inv(A)*B, except it is computed in a
different way. If A is an n-by-n matrix and B is a column vector
with n components, or a matrix with several such columns,
then X = A\B is the solution to the equation AX = B computed
by Gaussian elimination. A warning message is displayed if A
is badly scaled or nearly singular. See the reference page for
mldivide for more information.

2-37

Arithmetic Operators + - * / \ ^ ’

If A is an m-by-n matrix with m ~= n and B is a column vector
with m components, or a matrix with several such columns,
then X = A\B is the solution in the least squares sense to the
under- or overdetermined system of equations AX = B. The
effective rank, k, of A is determined from the QR decomposition
with pivoting (see “Algorithm” on page 2-2123 for details). A
solution X is computed that has at most k nonzero components
per column. If k < n, this is usually not the same solution
as pinv(A)*B, which is the least squares solution with the

smallest norm X .

.\ Array left division. A.\B is the matrix with elements
B(i,j)/A(i,j). A and B must have the same size, unless one
of them is a scalar.

^ Matrix power. X^p is X to the power p, if p is a scalar. If p is
an integer, the power is computed by repeated squaring. If the
integer is negative, X is inverted first. For other values of p,
the calculation involves eigenvalues and eigenvectors, such
that if [V,D] = eig(X), then X^p = V*D.^p/V.

If x is a scalar and P is a matrix, x^P is x raised to the matrix
power P using eigenvalues and eigenvectors. X^P, where X and
P are both matrices, is an error.

.^ Array power. A.^B is the matrix with elements A(i,j) to the
B(i,j) power. A and B must have the same size, unless one of
them is a scalar.

' Matrix transpose. A' is the linear algebraic transpose of A. For
complex matrices, this is the complex conjugate transpose.

.' Array transpose. A.' is the array transpose of A. For complex
matrices, this does not involve conjugation.

2-38

Arithmetic Operators + - * / \ ^ ’

Nondouble
Data Type
Support

This section describes the arithmetic operators’ support for data types
other than double.

Data Type single

You can apply any of the arithmetic operators to arrays of type single
and MATLAB returns an answer of type single. You can also combine
an array of type double with an array of type single, and the result
has type single.

Integer Data Types

You can apply most of the arithmetic operators to real arrays of the
following integer data types:

• int8 and uint8

• int16 and uint16

• int32 and uint32

All operands must have the same integer data type and MATLAB
returns an answer of that type.

Note The arithmetic operators do not support operations on the data
types int64 or uint64. Except for the unary operators +A and A.',
the arithmetic operators do not support operations on complex arrays
of any integer data type.

For example,

x = int8(3) + int8(4);
class(x)

ans =

int8

2-39

Arithmetic Operators + - * / \ ^ ’

The following table lists the binary arithmetic operators that you can
apply to arrays of the same integer data type. In the table, A and B are
arrays of the same integer data type and c is a scalar of type double or
the same type as A and B.

Operation Support when A and B Have Same Integer Type

+A, -A Yes

A+B, A+c,
c+B

Yes

A-B, A-c,
c-B

Yes

A.*B Yes

A*c, c*B Yes

A*B No

A/c, c/B Yes

A.\B, A./B Yes

A\B, A/B No

A.^B Yes, if B has nonnegative integer values.

c^k Yes, for a scalar c and a nonnegative scalar integer k,
which have the same integer data type or one of which
has type double

A.', A' Yes

Combining Integer Data Types with Type Double

For the operations that support integer data types, you can combine a
scalar or array of an integer data type with a scalar, but not an array,
of type double and the result has the same integer data type as the
input of integer type. For example,

y = 5 + int32(7);
class(y)

2-40

Arithmetic Operators + - * / \ ^ ’

ans =

int32

However, you cannot combine an array of an integer data type with
either of the following:

• A scalar or array of a different integer data type

• A scalar or array of type single

The section “Numeric Types”, under “Data Types” in the MATLAB
Programming documentation, provides more information about
operations on nondouble data types.

Remarks The arithmetic operators have M-file function equivalents, as shown:

Binary addition A+B plus(A,B)

Unary plus +A uplus(A)

Binary subtraction A-B minus(A,B)

Unary minus -A uminus(A)

Matrix
multiplication

A*B mtimes(A,B)

Arraywise
multiplication

A.*B times(A,B)

Matrix right
division

A/B mrdivide(A,B)

Arraywise right
division

A./B rdivide(A,B)

Matrix left division A\B mldivide(A,B)

Arraywise left
division

A.\B ldivide(A,B)

2-41

Arithmetic Operators + - * / \ ^ ’

Matrix power A^B mpower(A,B)

Arraywise power A.^B power(A,B)

Complex transpose A' ctranspose(A)

Matrix transpose A.' transpose(A)

Note For some toolboxes, the arithmetic operators are overloaded,
that is, they perform differently in the context of that toolbox. To see
the toolboxes that overload a given operator, type help followed by
the operator name. For example, type help plus. The toolboxes that
overload plus (+) are listed. For information about using the operator in
that toolbox, see the documentation for the toolbox.

Examples Here are two vectors, and the results of various matrix and array
operations on them, printed with format rat.

Matrix Operations Array Operations

x 1

2

3

y 4

5

6

x' 1 2 3 y' 4 5 6

x+y 5

7

9

x-y -3

-3

-3

x + 2 3

4

5

x-2 -1

0

1

2-42

Arithmetic Operators + - * / \ ^ ’

Matrix Operations Array Operations

x * y Error x.*y 4

10

18

x'*y 32 x'.*y Error

x*y' 4 5 6

8 10 12

12 15 18

x.*y' Error

x*2 2

4

6

x.*2 2

4

6

x\y 16/7 x.\y 4

5/2

2

2\x 1/2

1

3/2

2./x 2

1

2/3

x/y 0 0 1/6

0 0 1/3

0 0 1/2

x./y 1/4

2/5

1/2

x/2 1/2

1

3/2

x./2 1/2

1

3/2

2-43

Arithmetic Operators + - * / \ ^ ’

Matrix Operations Array Operations

x^y Error x.^y 1

32

729

x^2 Error x.^2 1

4

9

2^x Error 2.^x 2

4

8

(x+i*y)' 1 - 4i 2 - 5i
3 - 6i

(x+i*y).' 1 + 4i 2 + 5i
3 + 6i

Diagnostics • From matrix division, if a square A is singular,

Warning: Matrix is singular to working precision.

• From elementwise division, if the divisor has zero elements,

Warning: Divide by zero.

Matrix division and elementwise division can produce NaNs or Infs
where appropriate.

• If the inverse was found, but is not reliable,

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = xxx

• From matrix division, if a nonsquare A is rank deficient,

2-44

Arithmetic Operators + - * / \ ^ ’

Warning: Rank deficient, rank = xxx tol = xxx

See Also mldivide, mrdivide, chol, det, inv, lu, orth, permute, ipermute, qr,
rref

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

[2] Davis, T.A., UMFPACK Version 4.6 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2002.

[3] Davis, T. A., CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2005.

2-45

http://www.netlib.org/lapack/lug/lapack_lug.html
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/cholmod

Relational Operators < > <= >= == ~=

Purpose Relational operations

Syntax A < B
A > B
A <= B
A >= B
A == B
A ~= B

Description The relational operators are <, >, <=, >=, ==, and ~=. Relational
operators perform element-by-element comparisons between two arrays.
They return a logical array of the same size, with elements set to
logical 1 (true) where the relation is true, and elements set to logical
0 (false) where it is not.

The operators <, >, <=, and >= use only the real part of their operands for
the comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors of
dissimilar length to be compared.

Note For some toolboxes, the relational operators are overloaded, that
is, they perform differently in the context of that toolbox. To see the
toolboxes that overload a given operator, type help followed by the
operator name. For example, type help lt. The toolboxes that overload
lt (<) are listed. For information about using the operator in that
toolbox, see the documentation for the toolbox.

Examples If one of the operands is a scalar and the other a matrix, the scalar
expands to the size of the matrix. For example, the two pairs of
statements

X = 5; X >= [1 2 3; 4 5 6; 7 8 10]
X = 5*ones(3,3); X >= [1 2 3; 4 5 6; 7 8 10]

produce the same result:

2-46

Relational Operators < > <= >= == ~=

ans =

1 1 1
1 1 0
0 0 0

See Also all, any, find, strcmp

Logical Operators: Elementwise & | ~, Logical Operators:
Short-circuit && ||

2-47

Logical Operators: Elementwise & | ~

Purpose Elementwise logical operations on arrays

Syntax A & B
A | B
~A

Description The symbols &, |, and ~ are the logical array operators AND, OR, and NOT.
They work element by element on arrays, with logical 0 representing
false, and logical 1 or any nonzero element representing true. The
logical operators return a logical array with elements set to 1 (true)
or 0 (false), as appropriate.

The & operator does a logical AND, the | operator does a logical OR, and
~A complements the elements of A. The function xor(A,B) implements
the exclusive OR operation. The truth table for these operators and
functions is shown below.

Inputs and or not xor

A B A & B A | B ~A xor(A,B)

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0

The precedence for the logical operators with respect to each other is

Operator Operation Priority

~ NOT Highest

& Elementwise AND

| Elementwise OR

&& Short-circuit AND

|| Short-circuit OR Lowest

2-48

Logical Operators: Elementwise & | ~

Remarks MATLAB always gives the & operator precedence over the | operator.
Although MATLAB typically evaluates expressions from left to right,
the expression a|b&c is evaluated as a|(b&c). It is a good idea to use
parentheses to explicitly specify the intended precedence of statements
containing combinations of & and |.

These logical operators have M-file function equivalents, as shown.

Logical
Operation Equivalent Function

A & B and(A,B)

A | B or(A,B)

~A not(A)

Examples This example shows the logical OR of the elements in the vector u with
the corresponding elements in the vector v:

u = [0 0 1 1 0 1];
v = [0 1 1 0 0 1];
u | v

ans =
0 1 1 1 0 1

See Also all, any, find, logical, xor, true, false

Logical Operators: Short-circuit && ||

Relational Operators < > <= >= == ~=

2-49

Logical Operators: Short-circuit && ||

Purpose Logical operations, with short-circuiting capability

Syntax expr1 && expr2
expr1 || expr2

Description expr1 && expr2 represents a logical AND operation that employs
short-circuiting behavior. With short-circuiting, the second operand
expr2 is evaluated only when the result is not fully determined by the
first operand expr1. For example, if A = 0, then the following statement
evaluates to false, regardless of the value of B, so MATLAB does not
evaluate B:

A && B

These two expressions must each be a valid MATLAB statement that
evaluates to a scalar logical result.

expr1 || expr2 represents a logical OR operation that employs
short-circuiting behavior.

Note Always use the && and || operators when short-circuiting is
required. Using the elementwise operators (& and |) for short-circuiting
can yield unexpected results.

Examples In the following statement, it doesn’t make sense to evaluate the
relation on the right if the divisor, b, is zero. The test on the left is put
in to avoid generating a warning under these circumstances:

x = (b ~= 0) && (a/b > 18.5)

By definition, if any operands of an AND expression are false, the
entire expression must be false. So, if (b ~= 0) evaluates to false,
MATLAB assumes the entire expression to be false and terminates its
evaluation of the expression early. This avoids the warning that would
be generated if MATLAB were to evaluate the operand on the right.

2-50

Logical Operators: Short-circuit && ||

See Also all, any, find, logical, xor, true, false

Logical Operators: Elementwise & | ~

Relational Operators < > <= >= == ~=

2-51

Special Characters [] () {} = ’ , ; : % ! @

Purpose Special characters

Syntax []
{ }
()
=
'
.
.
.()
..
...
,
;
:
%
%{ %}
!
@

2-52

Special Characters [] () {} = ’ , ; : % ! @

Description [] Brackets are used to form vectors and matrices. [6.9 9.64
sqrt(-1)] is a vector with three elements separated by blanks.
[6.9, 9.64, i] is the same thing. [1+j 2-j 3] and [1 +j
2 -j 3] are not the same. The first has three elements, the
second has five.

[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends
the first row.

Vectors and matrices can be used inside [] brackets. [A B;C]
is allowed if the number of rows of A equals the number of
rows of B and the number of columns of A plus the number
of columns of B equals the number of columns of C. This
rule generalizes in a hopefully obvious way to allow fairly
complicated constructions.

A = [] stores an empty matrix in A. A(m,:) = [] deletes
row m of A. A(:,n) = [] deletes column n of A. A(n) = []
reshapes A into a column vector and deletes the third element.

[A1,A2,A3...] = function assigns function output to
multiple variables.

For the use of [and] on the left of an “=” in multiple
assignment statements, see lu, eig, svd, and so on.

{ } Curly braces are used in cell array assignment statements. For
example, A(2,1) = {[1 2 3; 4 5 6]}, or A{2,2} = ('str').
See help paren for more information about { }.

2-53

Special Characters [] () {} = ’ , ; : % ! @

() Parentheses are used to indicate precedence in arithmetic
expressions in the usual way. They are used to enclose
arguments of functions in the usual way. They are also used
to enclose subscripts of vectors and matrices in a manner
somewhat more general than usual. If X and V are vectors,
then X(V) is [X(V(1)), X(V(2)), ..., X(V(n))]. The
components of V must be integers to be used as subscripts. An
error occurs if any such subscript is less than 1 or greater than
the size of X. Some examples are

• X(3) is the third element of X.

• X([1 2 3]) is the first three elements of X.

See help paren for more information about ().

If X has n components, X(n: 1:1) reverses them. The same
indirect subscripting works in matrices. If V has m components
and W has n components, then A(V,W) is the m-by-n matrix
formed from the elements of A whose subscripts are the
elements of V and W. For example, A([1,5],:) = A([5,1],:)
interchanges rows 1 and 5 of A.

= Used in assignment statements. B = A stores the elements of A
in B. == is the relational equals operator. See the Relational
Operators < > <= >= == ~= page.

' Matrix transpose. X' is the complex conjugate transpose of X.
X.' is the nonconjugate transpose.

Quotation mark. 'any text' is a vector whose components are
the ASCII codes for the characters. A quotation mark within
the text is indicated by two quotation marks.

. Decimal point. 314/100, 3.14, and .314e1 are all the same.

Element-by-element operations. These are obtained using .* ,
.^, ./, or .\. See the Arithmetic Operators page.

. Field access. S(m).f when S is a structure, accesses the
contents of field f of that structure.

2-54

Special Characters [] () {} = ’ , ; : % ! @

.(
)

Dynamic Field access. S.(df) when A is a structure, accesses
the contents of dynamic field df of that structure. Dynamic
field names are defined at runtime.

.. Parent directory. See cd.

... Continuation. Three or more periods at the end of a line
continue the current function on the next line. Three or more
periods before the end of a line cause MATLAB to ignore the
remaining text on the current line and continue the function on
the next line. This effectively makes a comment out of anything
on the current line that follows the three periods. See “Entering
Long Statements (Line Continuation)” for more information.

, Comma. Used to separate matrix subscripts and function
arguments. Used to separate statements in multistatement
lines. For multistatement lines, the comma can be replaced by
a semicolon to suppress printing.

; Semicolon. Used inside brackets to end rows. Used after an
expression or statement to suppress printing or to separate
statements.

: Colon. Create vectors, array subscripting, and for loop
iterations. See colon (:) for details.

% Percent. The percent symbol denotes a comment; it indicates
a logical end of line. Any following text is ignored. MATLAB
displays the first contiguous comment lines in a M-file in
response to a help command.

%{
%}

Percent-brace. The text enclosed within the %{ and %} symbols
is a comment block. Use these symbols to insert comments that
take up more than a single line in your M-file code. Any text
between these two symbols is ignored by MATLAB.

With the exception of whitespace characters, the %{ and %}
operators must appear alone on the lines that immediately
precede and follow the block of help text. Do not include any
other text on these lines.

2-55

Special Characters [] () {} = ’ , ; : % ! @

! Exclamation point. Indicates that the rest of the input line is
issued as a command to the operating system. See “Running
External Programs” for more information.

@ Function handle. MATLAB data type that is a handle to a
function. See function_handle (@) for details.

Remarks Some uses of special characters have M-file function equivalents, as
shown:

Horizontal
concatenation

[A,B,C...] horzcat(A,B,C...)

Vertical
concatenation

[A;B;C...] vertcat(A,B,C...)

Subscript reference A(i,j,k...)subsref(A,S). See help
subsref.

Subscript
assignment

A(i,j,k...)=
B

subsasgn(A,S,B). See help
subsasgn.

Note For some toolboxes, the special characters are overloaded, that
is, they perform differently in the context of that toolbox. To see the
toolboxes that overload a given character, type help followed by the
character name. For example, type help transpose. The toolboxes
that overload transpose (.') are listed. For information about using
the character in that toolbox, see the documentation for the toolbox.

See Also Arithmetic Operators + - * / \ ^ '

Relational Operators < > <= >= == ~=

Logical Operators: Elementwise & | ~,

2-56

colon (:)

Purpose Create vectors, array subscripting, and for-loop iterators

Description The colon is one of the most useful operators in MATLAB. It can create
vectors, subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced
vectors:

j:k is the same as [j,j+1,...,k]

j:k is empty if j > k

j:i:k is the same as [j,j+i,j+2i, ...,k]

j:i:k is empty if i == 0, if i > 0 and j > k, or if i < 0 and j < k

where i, j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick
out selected rows, columns, and elements of vectors, matrices, and
higher-dimensional arrays:

A(:,j) is the jth column of A

A(i,:) is the ith row of A

A(:,:) is the equivalent two-dimensional array. For matrices this
is the same as A.

A(j:k) is A(j), A(j+1),...,A(k)

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k)

A(:,:,k) is the kth page of three-dimensional array A.

A(i,j,k,:)is a vector in four-dimensional array A. The vector includes
A(i,j,k,1), A(i,j,k,2), A(i,j,k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On
the left side of an assignment statement, A(:) fills A,
preserving its shape from before. In this case, the right
side must contain the same number of elements as A.

2-57

colon (:)

Examples Using the colon with integers,

D = 1:4

results in

D =
1 2 3 4

Using two colons to create a vector with arbitrary real increments
between the elements,

E = 0:.1:.5

results in

E =
0 0.1000 0.2000 0.3000 0.4000 0.5000

The command

A(:,:,2) = pascal(3)

generates a three-dimensional array whose first page is all zeros.

A(:,:,1) =
0 0 0
0 0 0
0 0 0

A(:,:,2) =
1 1 1
1 2 3
1 3 6

See Also for, linspace, logspace, reshape

2-58

abs

Purpose Absolute value and complex magnitude

Syntax abs(X)

Description abs(X) returns an array Y such that each element of Y is the absolute
value of the corresponding element of X.

If X is complex, abs(X) returns the complex modulus (magnitude),
which is the same as

sqrt(real(X).^2 + imag(X).^2)

Examples abs(-5)
ans =

5

abs(3+4i)
ans =

5

See Also angle, sign, unwrap

2-59

accumarray

Purpose Construct array with accumulation

Syntax A = accumarray(subs, val)
A = accumarray(subs,val,sz)
A = accumarray(subs,val,sz,fun)
A = accumarray(subs,val,sz,fun,fillval)
A = accumarray(subs,val,sz,fun,fillval,issparse)
A = accumarray({subs1, subs2, ...}, val, ...)

Description A = accumarray(subs, val) creates an array A by accumulating
elements of the vector val using the subscript in subs. Each row of the
m-by-n matrix subs defines an N-dimensional subscript into the output
A. Each element of val has a corresponding row in subs. accumarray
collects all elements of val that correspond to identical subscripts in
subs, sums those values, and stores the result in the element of A that
corresponds to the subscript. Elements of A that are not referred to
by any row of subs contain zero.

If subs is a nonempty matrix with N>1 columns, then A is an
N-dimensional array of size max(subs,[],1). If subs is empty with
N>1 columns, then A is an N-dimensional empty array with size
0-by-0-by-...-by-0. subs can also be a column vector, in which case a
second column of ones is implied, and A is a column vector. subs must
contain positive integers.

subs can also be a cell vector with one or more elements, each element a
vector of positive integers. All the vectors must have the same length.
In this case, subs is treated as if the vectors formed columns of an index
matrix.

val must be a numeric, logical, or character vector with the same length
as the number of rows in subs. val can also be a scalar whose value is
repeated for all the rows of subs.

accumarray sums values from val using the default behavior of sum.

A = accumarray(subs,val,sz) creates an array A with size sz,
where sz is a vector of positive integers. If subs is nonempty with
N>1 columns, then sz must have N elements, where all(sz >=

2-60

accumarray

max(subs,[],1)). If subs is a nonempty column vector, then sz must
be [M 1], where M >= MAX(subs). Specify sz as [] for the default
behavior.

A = accumarray(subs,val,sz,fun) applies function fun to each
subset of elements of val. You must specify the fun input using the @
symbol (e.g., @sin). The function fun must accept a column vector and
return a numeric, logical, or character scalar, or a scalar cell. Return
value A has the same class as the values returned by fun. Specify fun
as [] for the default behavior. fun is @sum by default.

Note If the subscripts in subs are not sorted, fun should not depend on
the order of the values in its input data.

A = accumarray(subs,val,sz,fun,fillval) puts the scalar value
fillval in elements of A that are not referred to by any row of subs.
For example, if subs is empty, then A is repmat(fillval,sz). fillval
and the values returned by fun must belong to the same class.

A = accumarray(subs,val,sz,fun,fillval,issparse) creates an
array A that is sparse if the scalar input issparse is equal to logical 1
(i.e., true), or full if issparse is equal to logical 0 (false). A is full by
default. If issparse is true, then fillval must be zero or [], and val
and the output of fun must be double.

A = accumarray({subs1, subs2, ...}, val, ...) passes multiple
subs vectors in a cell array. You can use any of the four optional inputs
(sz, fun, fillval, or issparse) with this syntax.

Examples Example 1

Create a 5-by-1 vector, and sum values for repeated 1-dimensional
subscripts:

val = 101:105;
subs = [1; 2; 4; 2; 4]
subs =

2-61

accumarray

1 % Subscript 1 of result <= val(1)
2 % Subscript 2 of result <= val(2)
4 % Subscript 4 of result <= val(3)
2 % Subscript 2 of result <= val(4)
4 % Subscript 4 of result <= val(5)

A = accumarray(subs, val)
A =

101 % A(1) = val(1) = 101
206 % A(2) = val(2)+val(4) = 102+104 = 206

0 % A(3) = 0
208 % A(4) = val(3)+val(5) = 103+105 = 208

Example 2

Create a 2-by-3-by-2 array, and sum values for repeated
three-dimensional subscripts:

val = 101:105;
subs = [1 1 1; 2 1 2; 2 3 2; 2 1 2; 2 3 2];

A = accumarray(subs, val)
A(:,:,1) =

101 0 0
0 0 0

A(:,:,2) =
0 0 0

206 0 208

Example 3

Create a 2-by-3-by-2 array, and sum values natively:

val = 101:105;
subs = [1 1 1; 2 1 2; 2 3 2; 2 1 2; 2 3 2];

A = accumarray(subs, int8(val), [], @(x) sum(x,'native'))
A(:,:,1) =

101 0 0

2-62

accumarray

0 0 0
A(:,:,2) =

0 0 0
127 0 127

class(A)
ans =

int8

Example 4

Pass multiple subscript arguments in a cell array.

Create a 12-element vector V:

V = 101:112;

Create three 12-element vectors, one for each dimension of the resulting
array A. Note how the indices of these vectors determine which elements
of V are accumulated in A:

% index 1 index 6 => V(1)+V(6) => A(1,3,1)
% | |
rowsubs = [1 3 3 2 3 1 2 2 3 3 1 2];
colsubs = [3 4 2 1 4 3 4 2 2 4 3 4];
pagsubs = [1 1 2 2 1 1 2 1 1 1 2 2];
% |
% index 4 => V(4) => A(2,1,2)
%
% A(1,3,1) = V(1) + V(6) = 101 + 106 = 207
% A(2,1,2) = V(4) = 104

Call accumarray, passing the subscript vectors in a cell array:

A = accumarray({rowsubs colsubs pagsubs}, V)
A(:,:,1) =

0 0 207 0 % A(1,3,1) is 207
0 108 0 0
0 109 0 317

2-63

accumarray

A(:,:,2) =
0 0 111 0

104 0 0 219 % A(2,1,2) is 104
0 103 0 0

Example 5

Create an array with the max function, and fill all empty elements of
that array with NaN:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @max, NaN)
A =

101 NaN NaN NaN
104 NaN 105 NaN

Example 6

Create a sparse matrix using the prod function:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @prod, 0, true)
A =

(1,1) 101
(2,1) 10608
(2,3) 10815

Example 7

Count the number of subscripts for each bin:

val = 1;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4])
A =

2-64

accumarray

1 0 0 0
2 0 2 0

Example 8

Create a logical array that shows which bins have two or more values:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @(x) length(x) > 1)
A =

0 0 0 0
1 0 1 0

Example 9

Group values in a cell array:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @(x) {x})
A =

[101] [] [] []
[2x1 double] [] [2x1 double] []

A{2}
ans =

104
102

See Also full, sparse, sum

2-65

acos

Purpose Inverse cosine; result in radians

Syntax Y = acos(X)

Description Y = acos(X) returns the inverse cosine (arccosine) for each element of
X. For real elements of X in the domain , acos(X) is real and in
the range . For real elements of X outside the domain ,
acos(X) is complex.

The acos function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse cosine function over the domain .

x = -1:.05:1;
plot(x,acos(x)), grid on

2-66

acos

Definition The inverse cosine can be defined as

Algorithm acos uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc., business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acosd, acosh, cos

2-67

http://www.netlib.org

acosd

Purpose Inverse cosine; result in degrees

Syntax Y = acosd(X)

Description Y = acosd(X) is the inverse cosine, expressed in degrees, of the
elements of X.

See Also cosd, acos

2-68

acosh

Purpose Inverse hyperbolic cosine

Syntax Y = acosh(X)

Description Y = acosh(X) returns the inverse hyperbolic cosine for each element
of X.

The acosh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosine function over the domain .

x = 1:pi/40:pi;
plot(x,acosh(x)), grid on

Definition The hyperbolic inverse cosine can be defined as

2-69

acosh

Algorithm acosh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc., business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acos, cosh

2-70

http://www.netlib.org

acot

Purpose Inverse cotangent; result in radians

Syntax Y = acot(X)

Description Y = acot(X) returns the inverse cotangent (arccotangent) for each
element of X.

The acot function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse cotangent over the domains and
.

x1 = -2*pi:pi/30:-0.1;
x2 = 0.1:pi/30:2*pi;
plot(x1,acot(x1),x2,acot(x2)), grid on

Definition The inverse cotangent can be defined as

2-71

acot

Algorithm acot uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc., business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also cot, acotd, acoth

2-72

http://www.netlib.org

acotd

Purpose Inverse cotangent; result in degrees

Syntax Y = acosd(X)

Description Y = acosd(X) is the inverse cotangent, expressed in degrees, of the
elements of X.

See Also cotd, acot

2-73

acoth

Purpose Inverse hyperbolic cotangent

Syntax Y = acoth(X)

Description Y = acoth(X) returns the inverse hyperbolic cotangent for each
element of X.

The acoth function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cotangent over the domains
and .

x1 = -30:0.1:-1.1;
x2 = 1.1:0.1:30;
plot(x1,acoth(x1),x2,acoth(x2)), grid on

Definition The hyperbolic inverse cotangent can be defined as

2-74

acoth

Algorithm acoth uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acot, coth

2-75

http://www.netlib.org

acsc

Purpose Inverse cosecant; result in radians

Syntax Y = acsc(X)

Description Y = acsc(X) returns the inverse cosecant (arccosecant) for each
element of X.

The acsc function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse cosecant over the domains and
.

x1 = -10:0.01:-1.01;
x2 = 1.01:0.01:10;
plot(x1,acsc(x1),x2,acsc(x2)), grid on

2-76

acsc

Definition The inverse cosecant can be defined as

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also csc, acscd, acsch

2-77

http://www.netlib.org

acscd

Purpose Inverse cosecant; result in degrees

Syntax Y = acscd(X)

Description Y = acscd(X) is the inverse cotangent, expressed in degrees, of the
elements of X.

See Also cscd, acsc

2-78

acsch

Purpose Inverse hyperbolic cosecant

Syntax Y = acsch(X)

Description Y = acsch(X) returns the inverse hyperbolic cosecant for each element
of X.

The acsch function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosecant over the domains
and .

x1 = -20:0.01:-1;
x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2)), grid on

Definition The hyperbolic inverse cosecant can be defined as

2-79

acsch

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acsc, csch

2-80

http://www.netlib.org

actxcontrol

Purpose Create ActiveX control in figure window

Syntax h = actxcontrol('progid')
h = actxcontrol('progid','param1',value1,...)
h = actxcontrol('progid', position)
h = actxcontrol('progid', position, fig_handle)
h = actxcontrol('progid',position,fig_handle,event_handler)
h = actxcontrol('progid',position,fig_handle,event_handler,

'filename')

Description h = actxcontrol('progid') creates an ActiveX control in a figure
window. The type of control created is determined by the string
progid, the programmatic identifier (progid) for the control. (See the
documentation provided by the control vendor to get this string.) The
returned object, h, represents the default interface for the control.

Note that progid cannot be an ActiveX server because MATLAB cannot
insert ActiveX servers in a figure. See actxserver for use with ActiveX
servers.

h = actxcontrol('progid','param1',value1,...) creates an
ActiveX control using the optional parameter name/value pairs.
Parameter names include:

• position — MATLAB position vector specifying the control’s
position. The format is [left, bottom, width, height] using pixel units.

• parent — Handle to parent figure, model, or command window.

• callback — Name of event handler. Specify a single name to use the
same handler for all events. Specify a cell array of event name/event
handler pairs to handle specific events.

• filename — Sets the control’s initial conditions to those in the
previously saved control.

• licensekey — License key to create licensed ActiveX controls that
require design-time licenses. See “Deploying ActiveX Controls
Requiring Run-Time Licenses” for information on how to use controls
that require run-time licenses.

2-81

actxcontrol

For example:

h = actxcontrol('progid','position',[0 0 200 200],...
'parent',gcf,...
'callback',{`Click' 'myClickHandler';...
'DblClick' 'myDblClickHandler';...
'MouseDown' 'myMouseDownHandler'});

The following syntaxes are deprecated and will not become obsolete.
They are included for reference, but the above syntaxes are preferred.

h = actxcontrol('progid', position) creates an ActiveX control
having the location and size specified in the vector, position. The
format of this vector is

[x y width height]

The first two elements of the vector determine where the control is
placed in the figure window, with x and y being offsets, in pixels, from
the bottom left corner of the figure window to the same corner of the
control. The last two elements, width and height, determine the size
of the control itself.

The default position vector is [20 20 60 60].

h = actxcontrol('progid', position, fig_handle) creates an
ActiveX control at the specified position in an existing figure window.
This window is identified by the Handle Graphics handle, fig_handle.

The current figure handle is returned by the gcf command.

Note If the figure window designated by fig_handle is invisible, the
control is invisible. If you want the control you are creating to be
invisible, use the handle of an invisible figure window.

h = actxcontrol('progid',position,fig_handle,event_handler)
creates an ActiveX control that responds to events. Controls respond
to events by invoking an M-file function whenever an event (such

2-82

actxcontrol

as clicking a mouse button) is fired. The event_handler argument
identifies one or more M-file functions to be used in handling events
(see “Specifying Event Handlers” on page 2-83 below).

h =
actxcontrol('progid',position,fig_handle,event_handler,'filename')
creates an ActiveX control with the first four arguments, and sets its
initial state to that of a previously saved control. MATLAB loads the
initial state from the file specified in the string filename.

If you don’t want to specify an event_handler, you can use an empty
string ('') as the fourth argument.

The progid argument must match the progid of the saved control.

Specifying Event Handlers

There is more than one valid format for the event_handler argument.
Use this argument to specify one of the following:

• A different event handler routine for each event supported by the
control

• One common routine to handle selected events

• One common routine to handle all events

In the first case, use a cell array for the event_handler argument, with
each row of the array specifying an event and handler pair:

{'event' 'eventhandler'; 'event2' 'eventhandler2'; ...}

event can be either a string containing the event name or a numeric
event identifier (see Example 2 below), and eventhandler is a string
identifying the M-file function you want the control to use in handling
the event. Include only those events that you want enabled.

In the second case, use the same cell array syntax just described, but
specify the same eventhandler for each event. Again, include only
those events that you want enabled.

2-83

actxcontrol

In the third case, make event_handler a string (instead of a cell array)
that contains the name of the one M-file function that is to handle all
events for the control.

There is no limit to the number of event and handler pairs you can
specify in the event_handler cell array.

Event handler functions should accept a variable number of arguments.

Strings used in the event_handler argument are not case sensitive.

Note Although using a single handler for all events may be easier in
some cases, specifying an individual handler for each event creates
more efficient code that results in better performance.

Remarks If the control implements any custom interfaces, use the interfaces
function to list them, and the invoke function to get a handle to a
selected interface.

When you no longer need the control, call release to release the
interface and free memory and other resources used by the interface.
Note that releasing the interface does not delete the control itself. Use
the delete function to do this.

For more information on handling control events, see the section,
“Writing Event Handlers” in the External Interfaces documentation.

For an example event handler, see the file sampev.m in the
toolbox\matlab\winfun\comcli directory.

Note If you encounter problems creating Microsoft Forms 2.0 controls
in MATLAB or other non-VBA container applications, see “Using
Microsoft Forms 2.0 Controls” in the External Interfaces documentation.

2-84

actxcontrol

Examples Example 1 — Basic Control Methods

Start by creating a figure window to contain the control. Then create a
control to run a Microsoft Calendar application in the window. Position
the control at a [0 0] x-y offset from the bottom left of the figure
window, and make it the same size (600 x 500 pixels) as the figure
window.

f = figure('position', [300 300 600 500]);
cal = actxcontrol('mscal.calendar', [0 0 600 500], f)
cal =

COM.mscal.calendar

Call the get method on cal to list all properties of the calendar:

cal.get
BackColor: 2.1475e+009

Day: 23
DayFont: [1x1 Interface.Standard_OLE_Types.Font]

Value: '8/20/2001'
.
.

Read just one property to record today’s date:

date = cal.Value
date =

8/23/2001

Set the Day property to a new value:

cal.Day = 5;
date = cal.Value
date =

8/5/2001

Call invoke with no arguments to list all available methods:

meth = cal.invoke
meth =

2-85

actxcontrol

NextDay: 'HRESULT NextDay(handle)'
NextMonth: 'HRESULT NextMonth(handle)'
NextWeek: 'HRESULT NextWeek(handle)'
NextYear: 'HRESULT NextYear(handle)'

.

.

Invoke the NextWeek method to advance the current date by one week:

cal.NextWeek;
date = cal.Value
date =

8/12/2001

Call events to list all calendar events that can be triggered:

cal.events
ans =

Click = void Click()
DblClick = void DblClick()
KeyDown = void KeyDown(int16 KeyCode, int16 Shift)
KeyPress = void KeyPress(int16 KeyAscii)
KeyUp = void KeyUp(int16 KeyCode, int16 Shift)
BeforeUpdate = void BeforeUpdate(int16 Cancel)
AfterUpdate = void AfterUpdate()
NewMonth = void NewMonth()
NewYear = void NewYear()

Example 2 — Event Handling

The event_handler argument specifies how you want the control to
handle any events that occur. The control can handle all events with
one common handler function, selected events with a common handler
function, or each type of event can be handled by a separate function.

This command creates an mwsamp control that uses one event handler,
sampev, to respond to all events:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...

2-86

actxcontrol

gcf, 'sampev')

The next command also uses a common event handler, but will only
invoke the handler when selected events, Click and DblClick are fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {'Click' 'sampev'; 'DblClick' 'sampev'})

This command assigns a different handler routine to each event. For
example, Click is an event, and myclick is the routine that executes
whenever a Click event is fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {'Click', 'myclick'; 'DblClick' 'my2click'; ...
'MouseDown' 'mymoused'});

The next command does the same thing, but specifies the events using
numeric event identifiers:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {-600, 'myclick'; -601 'my2click'; -605 'mymoused'});

See the section, “Sample Event Handlers” in the External Interfaces
documentation for examples of event handler functions and how to
register them with MATLAB.

See Also actxserver, release, delete, save, load, interfaces

2-87

actxcontrollist

Purpose List all currently installed ActiveX controls

Syntax C = actxcontrollist

Description C = actxcontrollist returns a list of each control, including its name,
programmatic identifier (or ProgID), and filename, in output cell array
C.

Examples Here is an example of the information that might be returned for
several controls:

list = actxcontrollist;

for k = 1:2
sprintf(' Name = %s\n ProgID = %s\n File = %s\n', ...

list{k,:})
end

ans =
Name = ActiveXPlugin Object
ProgID = Microsoft.ActiveXPlugin.1
File = C:\WINNT\System32\plugin.ocx

ans =
Name = Adaptec CD Guide
ProgID = Adaptec.EasyCDGuide
File = D:\APPLIC~1\Adaptec\Shared\CDGuide\CDGuide.ocx

See Also actxcontrolselect, actxcontrol

2-88

actxcontrolselect

Purpose Open GUI to create ActiveX control

Syntax h = actxcontrolselect
[h, info] = actxcontrolselect

Description h = actxcontrolselect displays a graphical interface that lists all
ActiveX controls installed on the system and creates the one that you
select from the list. The function returns a handle h for the object. Use
the handle to identify this particular control object when calling other
MATLAB COM functions.

[h, info] = actxcontrolselect returns the handle h and also the
1-by-3 cell array info containing information about the control. The
information returned in the cell array shows the name, programmatic
identifier (or ProgID), and filename for the control.

2-89

actxcontrolselect

The actxcontrolselect interface has a selection panel at the left of
the window and a preview panel at the right. Click on one of the control
names in the selection panel to see a preview of the control displayed.
(If MATLAB cannot create the control, an error message is displayed in
the preview panel.) Select an item from the list and click the Create
button at the bottom.

Remarks Click the Properties button on the actxcontrolselect window to
enter nondefault values for properties when creating the control. You
can select which figure window to put the control in (Parent field),
where to position it in the window (X and Y fields), and what size to
make the control (Width and Height).

You can also register any events you want the control to respond to and
what event handling routines to use when any of these events fire. Do
this by entering the name of the appropriate event handling routine
to the right of the event, or clicking the Browse button to search for
the event handler file.

Note If you encounter problems creating Microsoft Forms 2.0 controls
in MATLAB or other non-VBA container applications, see “Using
Microsoft Forms 2.0 Controls” in the External Interfaces documentation.

2-90

actxcontrolselect

Examples Select Calendar Control 9.0 in the actxcontrolselect window and
then click Properties to open the window shown above. Enter new
values for the size of the control, setting Width to 500 and Height to
350, then click OK. Click Create in the actxcontrolselect window
to create the control.

The control appears in a MATLAB figure window and the
actxcontrolselect function returns these values:

h =
COM.mscal.calendar.7

info =
[1x20 char] 'MSCAL.Calendar.7' [1x41 char]

Expand the info cell array to show the control name, ProgID, and
filename:

info{:}
ans =

Calendar Control 9.0
ans =

MSCAL.Calendar.7
ans =

D:\Applications\MSOffice\Office\MSCAL.OCX

See Also actxcontrollist, actxcontrol

2-91

actxGetRunningServer

Purpose Get handle to running instance of Automation server

Syntax h = actxGetRunningServer('progid')

Description h = actxGetRunningServer('progid') gets a reference to a
running instance of the OLE Automation server, where progid is the
programmatic identifier of the Automation server object and h is the
handle to the server object’s default interface.

The function issues an error if the server specified by progid is not
currently running or if the server object is not registered. When there
are multiple instances of the Automation server already running, the
behavior of this function is controlled by the operating system.

Example h = actxGetRunningServer('Excel.Application')

See Also actxcontrol, actxserver

2-92

actxserver

Purpose Create COM server

Syntax h = actxserver('progid')
h = actxserver('progid', 'machine', 'machineName')
h = actxserver('progid', 'interface', 'interfaceName')
h = actxserver('progid', 'machine', 'machineName',

'interface', 'interfaceName')
h = actxserver('progid', machine)

Description h = actxserver('progid') creates a local OLE Automation server,
where progid is the programmatic identifier of the COM server, and h
is the handle of the server’s default interface.

Get progid from the control or server vendor’s documentation. To see
the progid values for MATLAB, refer to “Programmatic Identifiers” in
the MATLAB External Interfaces documentation.

h = actxserver('progid', 'machine', 'machineName') creates an
OLE Automation server on a remote machine, where machineName is a
string specifying the name of the machine on which to launch the server.

h = actxserver('progid', 'interface', 'interfaceName')
creates a Custom interface server, where interfaceName is a
string specifying the interface name of the COM object. Values for
interfaceName are

• IUnknown — Use the IUnknown interface.

• The Custom interface name

You must know the name of the interface and have the server
vendor’s documentation in order to use the interfaceName value.
See “Automation, Custom, and Dual Server Types” in the MATLAB
External Interfaces documentation for information about Custom COM
servers and interfaces.

h = actxserver('progid', 'machine', 'machineName',
'interface', 'interfaceName') creates a Custom interface server on
a remote machine.

2-93

actxserver

The following syntaxes are deprecated and will not become obsolete.
They are included for reference, but the syntaxes described earlier are
preferred:

h = actxserver('progid', machine) creates a COM server running
on the remote system named by the machine argument. This can be an
IP address or a DNS name. Use this syntax only in environments that
support Distributed Component Object Model (DCOM).

Remarks For components implemented in a dynamic link library (DLL),
actxserver creates an in-process server. For components implemented
as an executable (EXE), actxserver creates an out-of-process server.
Out-of-process servers can be created either on the client system or on
any other system on a network that supports DCOM.

If the control implements any Custom interfaces, use the interfaces
function to list them, and the invoke function to get a handle to a
selected interface.

You can register events for COM servers.

Run
Microsoft
Excel
Example

This example creates an OLE Automation server, Microsoft Excel
version 9.0, and manipulates a workbook in the application:

% Create a COM server running Microsoft Excel
e = actxserver ('Excel.Application')

% e =
% COM.excel.application

% Make the Excel frame window visible
e.Visible = 1;

% Use the get method on the Excel object "e"
% to list all properties of the application:
e.get

% ans =

2-94

actxserver

% Application: [1x1Interface.Microsoft_Excel_9.0_
%Object_Library._Application]
% Creator: 'xlCreatorCode'
% Workbooks: [1x1 Interface.Microsoft_Excel_9.0_
%Object_Library.Workbooks]
% Caption: 'Microsoft Excel - Book1'
% CellDragAndDrop: 0
% ClipboardFormats: {3x1 cell}
% Cursor: 'xlNorthwestArrow'
% .
% .

% Create an interface "eWorkBooks"
eWorkbooks = e.Workbooks

% eWorkbooks =
% Interface.Microsoft_Excel_9.0_Object_Library.Workbooks

% List all methods for that interface
eWorkbooks.invoke

% ans =
% Add: 'handle Add(handle, [Optional]Variant)'
% Close: 'void Close(handle)'
% Item: 'handle Item(handle, Variant)'
% Open: 'handle Open(handle, string, [Optional]Variant)'
% OpenText: 'void OpenText(handle, string, [Optional]Variant)'

% Add a new workbook "w",
% also creating a new interface
w = eWorkbooks.Add

% w =
% Interface.Microsoft_Excel_9.0_Object_Library._Workbook

% Close Excel and delete the object
e.Quit;

2-95

actxserver

e.delete;

See Also actxcontrol, release, delete, save, load, interfaces

2-96

addevent

Purpose Add event to timeseries object

Syntax ts = addevent(ts,e)
ts = addevent(ts,Name,Time)

Description ts = addevent(ts,e) adds one or more tsdata.event objects, e, to
the timeseries object ts. e is either a single tsdata.event object or
an array of tsdata.event objects.

ts = addevent(ts,Name,Time) constructs one or more tsdata.event
objects and adds them to the Events property of ts. Name is a cell array
of event name strings. Time is a cell array of event times.

Examples Create a time-series object and add an event to this object.

%% Import the sample data
load count.dat

%% Create time-series object
count1=timeseries(count(:,1),1:24,'name', 'data');

%% Modify the time units to be 'hours' ('seconds' is default)
count1.TimeInfo.Units = 'hours';

%% Construct and add the first event at 8 AM
e1 = tsdata.event('AMCommute',8);

%% Specify the time units of the time
e1.Units = 'hours';

View the properties (EventData, Name, Time, Units, and StartDate)
of the event object.

get(e1)

MATLAB responds with

EventData: []

2-97

addevent

Name: 'AMCommute'
Time: 8

Units: 'hours'
StartDate: ''

%% Add the event to count1
count1 = addevent(count1,e1);

An alternative syntax for adding two events to the time series count1 is
as follows:

count1 = addevent(count1,{'AMCommute' 'PMCommute'},{8 18})

See Also timeseries, tsdata.event, tsprops

2-98

addframe

Purpose Add frame to Audio/Video Interleaved (AVI) file

Syntax aviobj = addframe(aviobj,frame)
aviobj = addframe(aviobj,frame1,frame2,frame3,...)
aviobj = addframe(aviobj,mov)
aviobj = addframe(aviobj,h)

Description aviobj = addframe(aviobj,frame) appends the data in frame to
the AVI file identified by aviobj, which was created by a previous
call to avifile. frame can be either an indexed image (m-by-n) or a
truecolor image (m-by-n-by-3) of double or uint8 precision. If frame is
not the first frame added to the AVI file, it must be consistent with the
dimensions of the previous frames.

addframe returns a handle to the updated AVI file object, aviobj. For
example, addframe updates the TotalFrames property of the AVI file
object each time it adds a frame to the AVI file.

aviobj = addframe(aviobj,frame1,frame2,frame3,...) adds
multiple frames to an AVI file.

aviobj = addframe(aviobj,mov) appends the frames contained in the
MATLAB movie mov to the AVI file aviobj. MATLAB movies that store
frames as indexed images use the colormap in the first frame as the
colormap for the AVI file, unless the colormap has been previously set.

aviobj = addframe(aviobj,h) captures a frame from the figure or
axis handle h and appends this frame to the AVI file. addframe renders
the figure into an offscreen array before appending it to the AVI file.
This ensures that the figure is written correctly to the AVI file even if
the figure is obscured on the screen by another window or screen saver.

Note If an animation uses XOR graphics, you must use getframe to
capture the graphics into a frame of a MATLAB movie. You can then
add the frame to an AVI movie using the addframe syntax aviobj =
addframe(aviobj,mov). See the example for an illustration.

2-99

addframe

Example This example calls addframe to add frames to the AVI file object aviobj.

fig=figure;
set(fig,'DoubleBuffer','on');
set(gca,'xlim',[-80 80],'ylim',[-80 80],...
'nextplot','replace','Visible','off')

aviobj = avifile('example.avi')

x = -pi:.1:pi;
radius = 0:length(x);
for i=1:length(x)
h = patch(sin(x)*radius(i),cos(x)*radius(i),...

[abs(cos(x(i))) 0 0]);
set(h,'EraseMode','xor');
frame = getframe(gca);
aviobj = addframe(aviobj,frame);

end

aviobj = close(aviobj);

See Also avifile, close, movie2avi

2-100

addOptional (inputParser)

Purpose Add optional argument to inputParser schema

Syntax p.addOptional(argname, default, validator)
addOptional(p, argname, default, validator)

Description p.addOptional(argname, default, validator) updates the schema
for inputParser object p by adding an optional argument, argname.
Specify the argument name in a string enclosed within single quotation
marks. The default input specifies the value to use when the optional
argument argname is not present in the actual inputs to the function.
The optional validator input is a handle to a function that MATLAB
uses during parsing to validate the input arguments. If the validator
function returns false or errors, the parsing fails and MATLAB throws
an error.

MATLAB parses parameter-value arguments after required arguments
and optional arguments.

addOptional(p, argname, default, validator) is functionally the
same as the syntax above.

Note For more information on the inputParser class, see Parsing
Inputs with inputParser in the MATLAB Programming documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class.

There are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these three syntaxes, you can see that there is one required
argument (script), one optional argument (format), and some number

2-101

addOptional (inputParser)

of optional arguments that are specified as parameter-value pairs
(options).

Begin writing the example publish_ip M-file by entering the following
two statements. The second statement calls the class constructor for
inputParser to create an instance of the class. This class instance, or
object, gives you access to all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

Following the constructor, add this block of code to the M-file.
This code uses the addRequired(inputParser), addOptional, and
addParamValue(inputParser) methods to define the input arguments
to the function:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)'

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

2-102

addOptional (inputParser)

See Also inputParser, addRequired(inputParser),
addParamValue(inputParser), parse(inputParser),
createCopy(inputParser)

2-103

addParamValue (inputParser)

Purpose Add parameter-value argument to inputParser schema

Syntax p.addParamValue(argname, default, validator)
addParamValue(p, argname, default, validator)

Description p.addParamValue(argname, default, validator) updates the
schema for inputParser object p by adding a parameter-value
argument, argname. Specify the argument name in a string enclosed
within single quotation marks. The default input specifies the value
to use when the optional argument name is not present in the actual
inputs to the function. The optional validator is a handle to a function
that MATLAB uses during parsing to validate the input arguments. If
the validator function returns false or errors, the parsing fails and
MATLAB throws an error.

MATLAB parses parameter-value arguments after required arguments
and optional arguments.

addParamValue(p, argname, default, validator) is functionally
the same as the syntax above.

Note For more information on the inputParser class, see Parsing
Inputs with inputParser in the MATLAB Programming documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class. There
are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these calling syntaxes, you can see that there is one required
argument (script), one optional argument (format), and a number
of optional arguments that are specified as parameter-value pairs
(options).

2-104

addParamValue (inputParser)

Begin writing the example publish_ip M-file by entering the following
two statements. Call the class constructor for inputParser to create an
instance of the class. This class instance, or object, gives you access to
all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

After calling the constructor, add the following lines to the
M-file. This code uses the addRequired(inputParser),
addOptional(inputParser), and addParamValue methods to define the
input arguments to the function:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)'

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

2-105

addParamValue (inputParser)

See Also inputParser, addRequired(inputParser),
addOptional(inputParser), parse(inputParser),
createCopy(inputParser)

2-106

addpath

Purpose Add directories to MATLAB search path

GUI
Alternatives

As an alternative to the addpath function, use File > Set Path to open
the Set Path dialog box.

Syntax addpath('directory')
addpath('dir','dir2','dir3' ...)
addpath('dir','dir2','dir3' ...'-flag')
addpath dir1 dir2 dir3 ... -flag

Description addpath('directory') adds the specified directory to the top (also
called front) of the current MATLAB search path. Use the full
pathname for directory.

addpath('dir','dir2','dir3' ...) adds all the specified directories
to the top of the path. Use the full pathname for each dir.

addpath('dir','dir2','dir3' ...'-flag') adds the specified
directories to either the top or bottom of the path, depending on the
value of flag.

flag Argument Result

0 or begin Add specified directories to the top of the
path

1 or end Add specified directories to the bottom (also
called end) of the path

addpath dir1 dir2 dir3 ... -flag is the unquoted form of the
syntax.

Remarks To recursively add subdirectories of your directory in addition to the
directory itself, run

addpath(genpath('directory'))

2-107

addpath

Use addpath statements in your startup.m file to use the modified path
in future sessions. For details, see “Modifying the Path in a startup.m
File” in the MATLAB Desktop Tools and Development Environment
Documentation.

Examples For the current path, viewed by typing path,

MATLABPATH
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

you can add c:/matlab/mymfiles to the front of the path by typing

addpath('c:/matlab/mymfiles')

Verify that the files were added to the path by typing

path

and MATLAB returns

MATLABPATH
c:\matlab\mymfiles
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

You can also use genpath in conjunction with addpath to add
subdirectories to the path from the command line. For example, to add
/control and its subdirectories to the path, use

addpath(genpath(fullfile(matlabroot,'toolbox/control')))

See Also genpath, path, pathdef, pathsep, pathtool, rehash,
restoredefaultpath, rmpath, savepath, startup

“Search Path” in the MATLAB Desktop Tools and Development
Environment Documentation

2-108

addpref

Purpose Add preference

Syntax addpref('group','pref',val)
addpref('group',{'pref1','pref2',...'prefn'},{val1,val2,

...valn})

Description addpref('group','pref',val) creates the preference specified by
group and pref and sets its value to val. It is an error to add a
preference that already exists.

group labels a related collection of preferences. You can choose any
name that is a legal variable name, and is descriptive enough to be
unique, e.g. 'ApplicationOnePrefs'. The input argument pref
identifies an individual preference in that group, and must be a legal
variable name.

addpref('group',{'pref1','pref2',...'prefn'},{val1,val2,...valn})
creates the preferences specified by the cell array of names 'pref1',
'pref2',...,'prefn', setting each to the corresponding value.

Note Preference values are persistent and maintain their values
between MATLAB sessions. Where they are stored is system dependent.

Examples This example adds a preference called version to the mytoolbox group
of preferences and sets its value to the string 1.0.

addpref('mytoolbox','version','1.0')

See Also getpref, ispref, rmpref, setpref, uigetpref, uisetpref

2-109

addproperty

Purpose Add custom property to object

Syntax h.addproperty('propertyname')
addproperty(h, 'propertyname')

Description h.addproperty('propertyname') adds the custom property specified
in the string, propertyname, to the object or interface, h. Use set to
assign a value to the property.

addproperty(h, 'propertyname') is an alternate syntax for the same
operation.

Examples Create an mwsamp control and add a new property named Position to
it. Assign an array value to the property:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get

Label: 'Label'
Radius: 20

h.addproperty('Position');
h.Position = [200 120];
h.get

Label: 'Label'
Radius: 20

Position: [200 120]

h.get('Position')
ans =

200 120

Delete the custom Position property:

h.deleteproperty('Position');
h.get

Label: 'Label'
Radius: 20

2-110

addproperty

See Also deleteproperty, get, set, inspect

2-111

addRequired (inputParser)

Purpose Add required argument to inputParser schema

Syntax p.addRequired(argname, validator)
addRequired(p, argname, validator)

Description p.addRequired(argname, validator) updates the schema for
inputParser object p by adding a required argument, argname. Specify
the argument name in a string enclosed within single quotation marks.
The optional validator is a handle to a function that MATLAB uses
during parsing to validate the input arguments. If the validator function
returns false or errors, the parsing fails and MATLAB throws an error.

MATLAB parses required arguments before optional or parameter-value
arguments.

addRequired(p, argname, validator) is functionally the same as
the syntax above.

Note For more information on the inputParser class, see Parsing
Inputs with inputParser in the MATLAB Programming documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class. There
are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these calling syntaxes, you can see that there is one required
argument (script), one optional argument (format), and a number
of optional arguments that are specified as parameter-value pairs
(options).

Begin writing the example publish_ip M-file by entering the following
two statements. Call the class constructor for inputParser to create an

2-112

addRequired (inputParser)

instance of the class. This class instance, or object, gives you access to
all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

After calling the constructor, add the following lines to the M-file.
This code uses the addRequired, addOptional(inputParser), and
addParamValue(inputParser) methods to define the input arguments
to the function:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)'

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

See Also inputParser, addOptional(inputParser),
addParamValue(inputParser), parse(inputParser),
createCopy(inputParser)

2-113

addsample

Purpose Add data sample to timeseries object

Syntax ts = addsample(ts,'Field1',Value1,'Field2',Value2,...)
ts = addsample(ts,s)

Description ts = addsample(ts,'Field1',Value1,'Field2',Value2,...) adds
one or more data samples to the timeseries object ts, where one field
must specify Time and another must specify Data. You can also specify
the following optional property-value pairs:

• 'Quality' — Array of data quality codes

• 'OverwriteFlag' — Logical value that controls whether to overwrite
a data sample at the same time with the new sample you are adding
to your timeseries object. When set to true, the new sample
overwrites the old sample at the same time.

ts = addsample(ts,s) adds one or more new samples stored in a
structure s to the timeseries object ts. You must define the fields
of the structure s before passing it as an argument to addsample by
assigning values to the following optional s fields:

• s.data

• s.time

• s.quality

• s.overwriteflag

Remarks A time-series data sample consists of one or more values recorded at a
specific time. The number of data samples in a time series is the same
as the length of the time vector.

The Time value must be a valid time vector.

Suppose that N is the number of samples. The sample size of each
time series is given by SampleSize = getsamplesize(ts). When

2-114

addsample

ts.IsTimeFirst is true, the size of the data is N-by-SampleSize. When
ts.IsTimeFirst is false, the size of the data is SampleSize-by-N.

Examples Add a data value of 420 at time 3.

ts = ts.addsample('Time',3,'Data',420);

Add a data value of 420 at time 3 and specify quality code 1 for this data
value. Set the flag to overwrite an existing value at time 3.

ts = ts.addsample('Data',3.2,'Quality',1,'OverwriteFlag',...
true,'Time',3);

See Also delsample, getdatasamplesize, tsprops

2-115

addsampletocollection

Purpose Add sample to tscollection object

Syntax tsc = addsampletocollection(tsc,'time',Time,TS1Name,TS1Data,
TSnName,TSnData)

Description tsc =
addsampletocollection(tsc,'time',Time,TS1Name,TS1Data,
TSnName,TSnData) adds data samples TSnData to the collection
member TSnName in the tscollection object tsc at one or more Time
values. Here, TSnName is the string that represents the name of a time
series in tsc, and TSnData is an array containing data samples.

Remarks If you do not specify data samples for a time-series member in tsc,
that time-series member will contain missing data at the times given
by Time (for numerical time-series data), NaN values, or (for logical
time-series data) false values.

When a time-series member requires Quality values, you can specify
data quality codes together with the data samples by using the following
syntax:

tsc = addsampletocollection(tsc,'time',time,TS1Name,...
ts1cellarray,TS2Name,ts2cellarray,...)

Specify data in the first cell array element and Quality in the second
cell array element.

Note If a time-series member already has Quality values but you only
provide data samples, 0s are added to the existing Quality array at
the times given by Time.

Examples The following example shows how to create a tscollection that
consists of two timeseries objects, where one timeseries does not
have quality codes and the other does. The final step of the example
adds a sample to the tscollection.

2-116

addsampletocollection

1 Create two timeseries objects, ts1 and ts2.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0],1:5,...
'name','acceleration');

ts2 = timeseries([3.2 4.2 6.2 8.5 1.1],1:5,...
'name','speed');

2 Define a dictionary of quality codes and descriptions for ts2.

ts2.QualityInfo.Code = [0 1];
ts2.QualityInfo.Description = {'bad','good'};

3 Assign a quality of code of 1, which is equivalent to 'good', to each
data value in ts2.

ts2.Quality = ones(5,1);

4 Create a time-series collection tsc, which includes time series ts1
and ts2.

tsc = tscollection({ts1,ts2});

5 Add a data sample to the collection tsc at 3.5 seconds.

tsc = addsampletocollection(tsc,'time',3.5,'acceleration',10,
'speed',{5 1});

The cell array for the timeseries object 'speed' specifies both the
data value 5 and the quality code 1.

Note If you do not specify a quality code when adding a data sample
to a time series that has quality codes, then the lowest quality code is
assigned to the new sample by default.

See Also delsamplefromcollection, tscollection, tsprops

2-117

addtodate

Purpose Modify date number by field

Syntax R = addtodate(D, Q, F)

Description R = addtodate(D, Q, F) adds quantity Q to the indicated date field F
of a scalar serial date number D, returning the updated date number R.

The quantity Q to be added must be a double scalar whole number, and
can be either positive or negative. The date field F must be a 1-by-N
character array equal to one of the following: 'year', 'month', or 'day'.

If the addition to the date field causes the field to roll over, MATLAB
adjusts the next more significant fields accordingly. Adding a negative
quantity to the indicated date field rolls back the calender on the
indicated field. If the addition causes the field to roll back, MATLAB
adjusts the next less significant fields accordingly.

Examples Adding 20 days to the given date in late December causes the calendar
to roll over to January of the next year:

R = addtodate(datenum('12/24/1984 12:45'), 20, 'day');

datestr(R)
ans =

13-Jan-1985 12:45:00

See Also date, datenum, datestr, datevec

2-118

addts

Purpose Add timeseries object to tscollection object

Syntax tsc = addts(tsc,ts)
tsc = addts(tsc,ts)
tsc = addts(tsc,ts,Name)
tsc = addts(tsc,Data,Name)

Description tsc = addts(tsc,ts) adds the timeseries object ts to tscollection
object tsc.

tsc = addts(tsc,ts) adds a cell array of timeseries objects ts to
the tscollection tsc.

tsc = addts(tsc,ts,Name) adds a cell array of timeseries objects
ts to tscollection tsc. Name is a cell array of strings that gives the
names of the timeseries objects in ts.

tsc = addts(tsc,Data,Name) creates a new timeseries object from
Data with the name Name and adds it to the tscollection object tsc.
Data is a numerical array and Name is a string.

Remarks The timeseries objects you add to the collection must have the same
time vector as the collection. That is, the time vectors must have the
same time values and units.

Suppose that the time vector of a timeseries object is associated with
calendar dates. When you add this timeseries to a collection with a
time vector without calendar dates, the time vectors are compared based
on the units and the values relative to the StartDate property. For
more information about properties, see the timeseries reference page.

Examples The following example shows how to add a time series to a time-series
collection:

1 Create two timeseries objects, ts1 and ts2.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0],1:5,...
'name','acceleration');

2-119

addts

ts2 = timeseries([3.2 4.2 6.2 8.5 1.1],1:5,...
'name','speed');

2 Create a time-series collection tsc, which includes ts1.

tsc = tscollection(ts1);

3 Add ts2 to the tsc collection.

tsc = addts(tsc, ts2);

4 To view the members of tsc, type

tsc

at the MATLAB prompt. MATLAB responds with

Time Series Collection Object: unnamed

Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:

acceleration
speed

The members of tsc are listed by name at the bottom: acceleration
and speed. These are the Name properties of the timeseries objects
ts1 and ts2, respectively.

See Also removets, tscollection

2-120

airy

Purpose Airy functions

Syntax W = airy(Z)
W = airy(k,Z)
[W,ierr] = airy(k,Z)

Definition The Airy functions form a pair of linearly independent solutions to

The relationship between the Airy and modified Bessel functions is

where

Description W = airy(Z) returns the Airy function, , for each element of
the complex array Z.

W = airy(k,Z) returns different results depending on the value of k.

k Returns

0 The same result as airy(Z)

1 The derivative,

2-121

airy

k Returns

2 The Airy function of the second kind,

3 The derivative,

[W,ierr] = airy(k,Z) also returns completion flags in an array the
same size as W.

ierr Description

0 airy successfully computed the Airy function
for this element.

1 Illegal arguments

2 Overflow. Returns Inf

3 Some loss of accuracy in argument reduction

4 Unacceptable loss of accuracy, Z too large

5 No convergence. Returns NaN

See Also besseli, besselj, besselk, bessely

References [1] Amos, D. E., “A Subroutine Package for Bessel Functions of
a Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-122

align

Purpose Align user interface controls (uicontrols) and axes

Syntax align(HandleList,'HorizontalAlignment','VerticalAlignment')
Positions = align(HandleList,'HorizontalAlignment',

'VerticalAlignment')
Positions = align(CurPositions,'HorizontalAlignment',

'VerticalAlignment')

Description align(HandleList,'HorizontalAlignment','VerticalAlignment')
aligns the uicontrol and axes objects in HandleList, a vector
of handles, according to the options HorizontalAlignment and
VerticalAlignment. The following table shows the possible values for
HorizontalAlignment and VerticalAlignment.

Argument Possible Values

HorizontalAlignment None, Left, Center, Right, Distribute,
Fixed

VerticalAlignment None, Top, Middle, Bottom, Distribute,
Fixed

All alignment options align the objects within the bounding box that
encloses the objects. Distribute and Fixed align objects to the bottom
left of the bounding box. Distribute evenly distributes the objects
while Fixed distributes the objects with a fixed distance (in points)
between them.

If you use Fixed for Horizontal Alignment or Vertical Alignment,
then you must specify the distance, in points, as an extra argument.
These are some examples:

align(HandleList,'Fixed',Distance,'VerticalAlignment')

distributes the specified components Distance points horizontally and
aligns them vertically as specified.

align(HandleList,'HorizontalAlignment','Fixed',Distance)

2-123

align

aligns the specified components horizontally as specified and distributes
them Distance points vertically.

align(HandleList,'Fixed','HorizontalDistance',...
'Fixed','VerticalDistance')

distributes the specified components HorizontalDistance points
horizontally and distributes them VerticalDistance points vertically.

Note 72 points equals 1 inch.

Positions = align(HandleList,'HorizontalAlignment',
'VerticalAlignment') returns updated positions for the specified
objects as a vector of Position vectors. The position of the objects on
the figure does not change.

Positions = align(CurPositions,'HorizontalAlignment',
'VerticalAlignment') returns updated positions for the objects whose
positions are contained in CurPositions, where CurPositions is a
vector of Position vectors. The position of the objects on the figure
does not change.

2-124

alim

Purpose Set or query axes alpha limits

Syntax alpha_limits = alim
alim([amin amax])
alim_mode = alim('mode')
alim('alim_mode')
alim(axes_handle,...)

Description alpha_limits = alim returns the alpha limits (the axes ALim property)
of the current axes.

alim([amin amax]) sets the alpha limits to the specified values. amin
is the value of the data mapped to the first alpha value in the alphamap,
and amax is the value of the data mapped to the last alpha value in the
alphamap. Data values in between are linearly interpolated across the
alphamap, while data values outside are clamped to either the first or
last alphamap value, whichever is closest.

alim_mode = alim('mode') returns the alpha limits mode (the axes
ALimMode property) of the current axes.

alim('alim_mode') sets the alpha limits mode on the current axes.
alim_mode can be

• auto — MATLAB automatically sets the alpha limits based on the
alpha data of the objects in the axes.

• manual — MATLAB does not change the alpha limits.

alim(axes_handle,...) operates on the specified axes.

See Also alpha, alphamap, caxis

Axes ALim and ALimMode properties

Patch FaceVertexAlphaData property

Image and surface AlphaData properties

Transparency for related functions

2-125

alim

“Transparency” in 3-D Visualization for examples

2-126

all

Purpose Determine whether all array elements are nonzero

Syntax B = all(A)
B = all(A, dim)

Description B = all(A) tests whether all the elements along various dimensions of
an array are nonzero or logical 1 (true).

If A is a vector, all(A) returns logical 1 (true) if all the elements are
nonzero and returns logical 0 (false) if one or more elements are zero.

If A is a matrix, all(A) treats the columns of A as vectors, returning a
row vector of logical 1’s and 0’s.

If A is a multidimensional array, all(A) treats the values along the
first nonsingleton dimension as vectors, returning a logical condition
for each vector.

B = all(A, dim) tests along the dimension of A specified by scalar dim.

Examples Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical 1 (true) only where A is less than
one half:

0 0 1 1 1 1 0

The all function reduces such a vector of logical conditions to a single
condition. In this case, all(B) yields 0.

2-127

all

This makes all particularly useful in if statements:

if all(A < 0.5)
do something

end

where code is executed depending on a single condition, not a vector
of possibly conflicting conditions.

Applying the all function twice to a matrix, as in all(all(A)), always
reduces it to a scalar condition.

all(all(eye(3)))
ans =

0

See Also any, logical operators (elementwise and short-circuit), relational
operators, colon

Other functions that collapse an array’s dimensions include max, mean,
median, min, prod, std, sum, and trapz.

2-128

allchild

Purpose Find all children of specified objects

Syntax child_handles = allchild(handle_list)

Description child_handles = allchild(handle_list) returns the list of all
children (including ones with hidden handles) for each handle. If
handle_list is a single element, allchild returns the output in a
vector. Otherwise, the output is a cell array.

Examples Compare the results returned by these two statements.

get(gca,'Children')
allchild(gca)

See Also findall, findobj

2-129

alpha

Purpose Set transparency properties for objects in current axes

Syntax alpha
alpha(face_alpha)
alpha(alpha_data)
alpha(alpha_data)
alpha(alpha_data)
alpha(alpha_data_mapping)
alpha(object_handle,value)

Description alpha sets one of three transparency properties, depending on what
arguments you specify with the call to this function.

FaceAlpha

alpha(face_alpha) sets the FaceAlpha property of all image, patch,
and surface objects in the current axes. You can set face_alpha to

• A scalar — Set the FaceAlpha property to the specified value (for
images, set the AlphaData property to the specified value).

• 'flat' — Set the FaceAlpha property to flat.

• 'interp' — Set the FaceAlpha property to interp.

• 'texture' — Set the FaceAlpha property to texture.

• 'opaque' — Set the FaceAlpha property to 1.

• 'clear' — Set the FaceAlpha property to 0.

See “Specifying a Single Transparency Value” for more information.

AlphaData (Surface Objects)

alpha(alpha_data) sets the AlphaData property of all surface objects
in the current axes. You can set alpha_data to

• A matrix the same size as CData — Set the AlphaData property to
the specified values.

• 'x' — Set the AlphaData property to be the same as XData.

2-130

alpha

• 'y' — Set the AlphaData property to be the same as YData.

• 'z' — Set the AlphaData property to be the same as ZData.

• 'color' — Set the AlphaData property to be the same as CData.

• 'rand' — Set the AlphaData property to a matrix of random values
equal in size to CData.

AlphaData (Image Objects)

alpha(alpha_data) sets the AlphaData property of all image objects in
the current axes. You can set alpha_data to

• A matrix the same size as CData — Set the AlphaData property to
the specified value.

• 'x' — Ignored.

• 'y' — Ignored.

• 'z' — Ignored.

• 'color' — Set the AlphaData property to be the same as CData.

• 'rand' — Set the AlphaData property to a matrix of random values
equal in size to CData.

FaceVertexAlphaData (Patch Objects)

alpha(alpha_data) sets the FaceVertexAlphaData property of all
patch objects in the current axes. You can set alpha_data to

• A matrix the same size as FaceVertexCData — Set the
FaceVertexAlphaData property to the specified value.

• 'x' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,1).

• 'y' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,2).

• 'z' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,3).

2-131

alpha

• 'color' — Set the FaceVertexAlphaData property to be the same as
FaceVertexCData.

• 'rand' — Set the FaceVertexAlphaData property to random values.

See Mapping Data to Transparency for more information.

AlphaDataMapping

alpha(alpha_data_mapping) sets the AlphaDataMapping property of
all image, patch, and surface objects in the current axes. You can set
alpha_data_mapping to

• 'scaled' — Set the AlphaDataMapping property to scaled.

• 'direct' — Set the AlphaDataMapping property to direct.

• 'none' — Set the AlphaDataMapping property to none.

alpha(object_handle,value) sets the transparency property only on
the object identified by object_handle.

See Also alim, alphamap

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

“Transparency” in 3-D Visualization for examples

2-132

alphamap

Purpose Specify figure alphamap (transparency)

Syntax alphamap
alphamap(alpha_map)
alphamap('parameter')
alphamap('parameter',length)
alphamap('parameter',delta)
alphamap(figure_handle,...)
alpha_map = alphamap
alpha_map = alphamap(figure_handle)
alpha_map = alphamap('parameter')

Description alphamap enables you to set or modify a figure’s Alphamap property.
Unless you specify a figure handle as the first argument, alphamap
operates on the current figure.

alphamap(alpha_map) sets the AlphaMap of the current figure to the
specified m-by-1 array of alpha values.

alphamap('parameter') creates a new alphamap or modifies the
current alphamap. You can specify the following parameters:

• default — Set the AlphaMap property to the figure’s default
alphamap.

• rampup — Create a linear alphamap with increasing opacity (default
length equals the current alphamap length).

• rampdown — Create a linear alphamap with decreasing opacity
(default length equals the current alphamap length).

• vup — Create an alphamap that is opaque in the center and becomes
more transparent linearly towards the beginning and end (default
length equals the current alphamap length).

• vdown — Create an alphamap that is transparent in the center
and becomes more opaque linearly towards the beginning and end
(default length equals the current alphamap length).

2-133

alphamap

• increase — Modify the alphamap making it more opaque (default
delta is .1, which is added to the current values).

• decrease — Modify the alphamap making it more transparent
(default delta is .1, which is subtracted from the current values).

• spin — Rotate the current alphamap (default delta is 1; note that
delta must be an integer).

alphamap('parameter',length) creates a new alphamap with the
length specified by length (used with parameters rampup, rampdown,
vup, vdown).

alphamap('parameter',delta) modifies the existing alphamap
using the value specified by delta (used with parameters increase,
decrease, spin).

alphamap(figure_handle,...) performs the operation on the
alphamap of the figure identified by figure_handle.

alpha_map = alphamap returns the current alphamap.

alpha_map = alphamap(figure_handle) returns the current
alphamap from the figure identified by figure_handle.

alpha_map = alphamap('parameter') returns the alphamap modified
by the parameter, but does not set the AlphaMap property.

See Also alim, alpha

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

“Transparency” in 3-D Visualization for examples

2-134

amd

Purpose Approximate minimum degree permutation

Syntax P = amd(A)
P = amd(A,opts)

Description P = amd(A) returns the approximate minimum degree permutation
vector for the sparse matrix C = A + A'. The Cholesky factorization
of C(P,P) or A(P,P) tends to be sparser than that of C or A. The amd
function tends to be faster than symamd, and also tends to return better
orderings than symamd. Matrix A must be square. If A is a full matrix,
then amd(A) is equivalent to amd(sparse(A)).

P = amd(A,opts) allows additional options for the reordering. The
opts input is a structure with the two fields shown below. You only
need to set the fields of interest:

• dense — A nonnegative scalar value that indicates what is considered
to be dense. If A is n-by-n, then rows and columns with more than
max(16,(dense*sqrt(n))) entries in A + A' are considered to be
"dense" and are ignored during the ordering. MATLAB places these
rows and columns last in the output permutation. The default value
for this field is 10.0 if this option is not present.

• aggressive — A scalar value controlling aggressive absorption. If
this field is set to a nonzero value, then aggressive absorption is
performed. This is the default if this option is not present.

MATLAB performs an assembly tree post-ordering, which is typically
the same as an elimination tree post-ordering. It is not always identical
because of the approximate degree update used, and because “dense”
rows and columns do not take part in the post-order. It well-suited
for a subsequent chol operation, however, If you require a precise
elimination tree post-ordering, you can use the following code:

P = amd(S);
C = spones(S)+spones(S'); % Skip this line if S is already symmetri
[ignore, Q] = etree(C(P,P));
P = P(Q);

2-135

amd

Examples This example constructs a sparse matrix and computes a two Cholesky
factors: one of the original matrix and one of the original matrix
preordered by amd. Note how much sparser the Cholesky factor of the
preordered matrix is compared to the factor of the matrix in its natural
ordering:

A = gallery('wathen',50,50);
p = amd(A);
L = chol(A,'lower');
Lp = chol(A(p,p),'lower');

figure;
subplot(2,2,1); spy(A);
title('Sparsity structure of A');

subplot(2,2,2); spy(A(p,p));
title('Sparsity structure of AMD ordered A');

subplot(2,2,3); spy(L);
title('Sparsity structure of Cholesky factor of A');

subplot(2,2,4); spy(Lp);
title('Sparsity structure of Cholesky factor of AMD ordered A');

set(gcf,'Position',[100 100 800 700]);

See Also colamd, colperm, symamd, symrcm, /

References AMD Version 1.2 is written and copyrighted by Timothy A.
Davis, Patrick R. Amestoy, and Iain S. Duff. It is available at
http://www.cise.ufl.edu/research/sparse/amd.

The authors of the code for symamd are Stefan I. Larimore and
Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,
Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.

2-136

http://www.cise.ufl.edu/research/sparse/amd

amd

Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

2-137

http://www.cise.ufl.edu/research/sparse/

ancestor

Purpose Ancestor of graphics object

Syntax p = ancestor(h,type)
p = ancestor(h,type,'toplevel')

Description p = ancestor(h,type) returns the handle of the closest ancestor of
h, if the ancestor is one of the types of graphics objects specified by
type. type can be:

• a string that is the name of a single type of object. For example,
'figure'

• a cell array containing the names of multiple objects. For example,
{'hgtransform','hggroup','axes'}

If MATLAB cannot find an ancestor of h that is one of the specified
types, then ancestor returns p as empty.

Note that ancestor returns p as empty but does not issue an error if h
is not the handle of a Handle Graphics object.

p = ancestor(h,type,'toplevel') returns the highest-level ancestor
of h, if this type appears in the type argument.

Examples Create some line objects and parent them to an hggroup object.

hgg = hggroup;
hgl = line(randn(5),randn(5),'Parent',hgg);

Now get the ancestor of the lines.

p = ancestor(hgg,{'figure','axes','hggroup'});
get(p,'Type')
ans =

hggroup

Now get the top-level ancestor

2-138

ancestor

p=ancestor(hgg,{'figure','axes','hggroup'},'toplevel');
get(p,'type')
ans =

figure

See Also findobj

2-139

and

Purpose Find logical AND of array or scalar inputs

Syntax A & B & ...
and(A, B)

Description A & B & ... performs a logical AND of all input arrays A, B, etc., and
returns an array containing elements set to either logical 1 (true)
or logical 0 (false). An element of the output array is set to 1 if all
input arrays contain a nonzero element at that same array location.
Otherwise, that element is set to 0.

Each input of the expression can be an array or can be a scalar value.
All nonscalar input arrays must have equal dimensions. If one or more
inputs are an array, then the output is an array of the same dimensions.
If all inputs are scalar, then the output is scalar.

If the expression contains both scalar and nonscalar inputs, then each
scalar input is treated as if it were an array having the same dimensions
as the other input arrays. In other words, if input A is a 3-by-5 matrix
and input B is the number 1, then B is treated as if it were a 3-by-5
matrix of ones.

and(A, B) is called for the syntax A & B when either A or B is an object.

Note The symbols & and && perform different operations in MATLAB.
The element-wise AND operator described here is &. The short-circuit
AND operator is &&.

Examples If matrix A is

0.4235 0.5798 0 0.7942 0
0.5155 0 0.7833 0.0592 0.8744
0.3340 0 0 0 0.0150
0.4329 0.6405 0.6808 0.0503 0

and matrix B is

2-140

and

0 1 0 1 0
1 1 1 0 1
0 1 1 1 0
0 1 0 0 1

then

A & B
ans =

0 1 0 1 0
1 0 1 0 1
0 0 0 0 0
0 1 0 0 0

See Also bitand, or, xor, not, any, all, logical operators, logical types, bitwise
functions

2-141

angle

Purpose Phase angle

Syntax P = angle(Z)

Description P = angle(Z) returns the phase angles, in radians, for each element of
complex array Z. The angles lie between .

For complex Z, the magnitude R and phase angle theta are given by

R = abs(Z)
theta = angle(Z)

and the statement

Z = R.*exp(i*theta)

converts back to the original complex Z.

Examples Z = [1 - 1i 2 + 1i 3 - 1i 4 + 1i
1 + 2i 2 - 2i 3 + 2i 4 - 2i
1 - 3i 2 + 3i 3 - 3i 4 + 3i
1 + 4i 2 - 4i 3 + 4i 4 - 4i]

P = angle(Z)

P =
-0.7854 0.4636 -0.3218 0.2450
1.1071 -0.7854 0.5880 -0.4636

-1.2490 0.9828 -0.7854 0.6435
1.3258 -1.1071 0.9273 -0.7854

Algorithm The angle function can be expressed as angle(z) = imag(log(z)) =
atan2(imag(z),real(z)).

See Also abs, atan2, unwrap

2-142

annotation

Purpose Create annotation objects

GUI
Alternatives

Create several types of annotations with the Figure Palette and modify
annotations with the Property Editor, components of the plotting tools.
Directly manipulate annotations in plot edit mode. For details, see
“How to Annotate Graphs” and “Using Plot Edit Mode” in the MATLAB
Graphics documentation.

Syntax annotation(annotation_type)
annotation('line',x,y)
annotation('arrow',x,y)
annotation('doublearrow',x,y)
annotation('textarrow',x,y)
annotation('textbox',[x y w h])
annotation('ellipse',[x y w h])
annotation('rectangle',[x y w h])
annotation(figure_handle,...)
annotation(...,'PropertyName',PropertyValue,...)
anno_obj_handle = annotation(...)

Description annotation(annotation_type) creates the specified annotation type
using default values for all properties. annotation_type can be one of
the following strings:

• 'line'

• 'arrow'

• 'doublearrow' (two-headed arrow),

• 'textarrow' (arrow with attached text box),

• 'textbox'

• 'ellipse'

• 'rectangle'

2-143

annotation

annotation('line',x,y) creates a line annotation object that extends
from the point defined by x(1),y(1) to the point defined by x(2),y(2),
specified in normalized figure units.

annotation('arrow',x,y) creates an arrow annotation object that
extends from the point defined by x(1),y(1) to the point defined by
x(2),y(2), specified in normalized figure units.

annotation('doublearrow',x,y) creates a two-headed annotation
object that extends from the point defined by x(1),y(1) to the point
defined by x(2),y(2), specified in normalized figure units.

annotation('textarrow',x,y) creates a textarrow annotation object
that extends from the point defined by x(1),y(1) to the point defined
by x(2),y(2), specified in normalized figure units. The tail end of the
arrow is attached to an editable text box.

annotation('textbox',[x y w h]) creates an editable text box
annotation with its lower left corner at the point x,y, a width w, and a
height h, specified in normalized figure units. Specify x, y, w, and h in
a single vector.

To type in the text box, enable plot edit mode (plotedit) and
double-click within the box.

annotation('ellipse',[x y w h]) creates an ellipse annotation with
the lower left corner of the bounding rectangle at the point x,y, a width
w, and a height h, specified in normalized figure units. Specify x, y,
w, and h in a single vector.

annotation('rectangle',[x y w h]) creates a rectangle annotation
with the lower left corner of the rectangle at the point x,y, a width w,
and a height h, specified in normalized figure units. Specify x, y, w, and
h in a single vector.

annotation(figure_handle,...) creates the annotation in the
specified figure.

annotation(...,'PropertyName',PropertyValue,...) creates the
annotation and sets the specified properties to the specified values.

2-144

annotation

anno_obj_handle = annotation(...) returns the handle to the
annotation object that is created.

Annotation
Layer

All annotation objects are displayed in an overlay axes that covers the
figure. This layer is designed to display only annotation objects. You
should not parent objects to this axes nor set any properties of this axes.
See the See Also section for information on the properties of annotation
objects that you can set.

Objects in the Plotting Axes

You can create lines, text, rectangles, and ellipses in data coordinates
in the axes of a graph using the line, text, and rectangle functions.
These objects are not placed in the annotation axes and must be located
inside their parent axes.

Deleting Annotations

Existing annotations persist on a plot when you replace its data. This
might not be what you want to do. If it is not, or if you want to remove
annotation objects for any reason, you can do so manually, or sometimes
programmatically, in several ways:

• To manually delete, click the Edit Plot tool or invoke plottools,
select the annotation(s) you want to remove, and do one of the
following:

- Press the Delete key.

- Press the Backspace key.

- Select Clear from the Edit menu.

- Select Delete from the context menu (one annotation at a time).

• If you obtained a handle for the annotation when you created it, use
the delete function:

delete(anno_obj_handle)

There is no reliable way to obtain handles for annotations from a
figure’s property set; you must keep track of them yourself.

2-145

annotation

• To delete all annotations at once (as well as all plot contents), type

clf

Normalized Coordinates

By default, annotation objects use normalized coordinates to specify
locations within the figure. In normalized coordinates, the point 0,0
is always the lower left corner and the point 1,1 is always the upper
right corner of the figure window, regardless of the figure size and
proportions. Set the Units property of annotation objects to change
their coordinates from normalized to inches, centimeters, points,
pixels, or characters.

When their Units property is other than normalized, annotation
objects have absolute positions with respect to the figure’s origin, and
fixed sizes. Therefore, they will shift position with respect to axes when
you resize figures. When units are normalized, annotations shrink and
grow when you resize figures; this can cause lines of text in textbox
annotations to wrap. However, if you set the FontUnits property of an
annotation textbox object to normalized, the text changes size rather
than wraps if the textbox size changes.

You can use either the set command or the Inspector to change a
selected annotation object’s Units property:

set(gco,'Units','inches') % or
inspect(gco)

See Also Properties for the annotation objects Annotation Arrow Properties,
Annotation Doublearrow Properties, Annotation Ellipse
Properties, Annotation Line Properties, Annotation Rectangle
Properties, Annotation Textarrow Properties, Annotation
Textbox Properties

See “Annotating Graphs” and “Annotation Objects” for more information.

2-146

Annotation Arrow Properties

Purpose Define annotation arrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Arrow
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation arrow
object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

HeadLength
scalar value in points

Length of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadWidth.

HeadStyle
select string from list

Style of the arrowhead. Specify this property as one of the strings
from the following table.

2-147

Annotation Arrow Properties

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

cback1 deltoid

cback2

cback3

HeadWidth
scalar value in points

Width of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadLength.

LineStyle
{-} | -- | : | -. | none

2-148

Annotation Arrow Properties

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured

2-149

Annotation Arrow Properties

from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-150

Annotation Doublearrow Properties

Purpose Define annotation doublearrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Doublearrow
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
doublearrow object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

Head1Length
scalar value in points

Length of the first arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Width.

The first arrowhead is located at the end defined by the point
x(1), y(1). See also the X and Y properties.

Head2Length
scalar value in points

Length of the second arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Width.

2-151

Annotation Doublearrow Properties

The first arrowhead is located at the end defined by the point
x(end), y(end). See also the X and Y properties.

Head1Style
select string from list

Style of the first arrowhead. Specify this property as one of the
strings from the following table

Head2Style
select string from list

Style of the second arrowhead. Specify this property as one of the
strings from the following table.

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

cback1 deltoid

2-152

Annotation Doublearrow Properties

Head Style
String Head

Head Style
String Head

cback2

cback3

Head1Width
scalar value in points

Width of the first arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Length.

Head2Width
scalar value in points

Width of the second arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head2Length.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

2-153

Annotation Doublearrow Properties

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-154

Annotation Doublearrow Properties

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-155

Annotation Ellipse Properties

Purpose Define annotation ellipse properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Ellipse
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation ellipse
object.

EdgeColor
ColorSpec {[0 0 0]} | none |

Color of the object’s edges. A three-element RGB vector or one of
the MATLAB predefined names, specifying the edge color.

See the ColorSpec reference page for more information on
specifying color.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

2-156

Annotation Ellipse Properties

See the ColorSpec reference page for more information on
specifying color.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

2-157

Annotation Ellipse Properties

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-158

Annotation Line Properties

Purpose Define annotation line properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Line
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation line
object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

2-159

Annotation Line Properties

Specifier
String Line Style

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-160

Annotation Line Properties

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-161

Annotation Rectangle Properties

Purpose Define annotation rectangle properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Rectangle
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
rectangle object.

EdgeColor
ColorSpec {[0 0 0]} | none |

Color of the object’s edges. A three-element RGB vector or one of
the MATLAB predefined names, specifying the edge color.

See the ColorSpec reference page for more information on
specifying color.

FaceAlpha
Scalar alpha value in range [0 1]

Transparency of object background. This property defines the
degree to which the object’s background color is transparent. A
value of 1 (the default) makes to color opaque, a value of 0 makes
the background completely transparent (i.e., invisible). The
default FaceAlpha is 1.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

2-162

Annotation Rectangle Properties

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

2-163

Annotation Rectangle Properties

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-164

Annotation Textarrow Properties

Purpose Define annotation textarrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Textarrow
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
textarrow object.

Color
ColorSpec Default: [0 0 0]

Color of the arrow, text and text border. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
color of the arrow, the color of the text (TextColor property), and
the rectangle enclosing the text (TextEdgeColor property).

Setting the Color property also sets the TextColor and
TextEdgeColor properties to the same color. However, if the
value of the TextEdgeColor is none, it remains none and the text
box is not displayed. You can set TextColor or TextEdgeColor
independently without affecting other properties.

For example, if you want to create a textarrow with a red arrow
and black text in a black box, you must

1 Set the Color property to red — set(h,'Color','r')

2 Set the TextColor to black — set(h,'TextColor','k')

3 Set the TextEdgeColor to black .—
set(h,'TextEdgeColor','k')

2-165

Annotation Textarrow Properties

If you do not want display the text box, set the TextEdgeColor
to none.

See the ColorSpec reference page for more information on
specifying color.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
A name, such as Helvetica

Font family. A string specifying the name of the font to use for the
text. To display and print properly, this font must be supported on
your system. The default font is Helvetica.

FontSize
size in points

Approximate size of text characters. A value specifying the font
size to use in points. The default size is 10 (1 point = 1/72 inch).

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

2-166

Annotation Textarrow Properties

Weight of text characters. MATLAB uses this property to select a
font from those available on your system. Generally, setting this
property to bold or demi causes MATLAB to use a bold font.

HeadLength
scalar value in points

Length of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadWidth.

HeadStyle
select string from list

Style of the arrowhead. Specify this property as one of the strings
from the following table.

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

cback1 deltoid

2-167

Annotation Textarrow Properties

Head Style
String Head

Head Style
String Head

cback2

cback3

HeadWidth
scalar value in points

Width of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadLength.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. This property specifies the
horizontal justification of the text string. It determines where
MATLAB places the string with regard to the point specified
by the Position property. The following picture illustrates the
alignment options.

See the Extent property for related information.

Interpreter
latex | {tex} | none

2-168

Annotation Textarrow Properties

Interpret TEX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TEX instructions (default) or displays all characters literally.
The options are:

• latex — Supports the full LATEX markup language.

• tex — Supports a subset of plain TEX markup language. See
the String property for a list of supported TEX instructions.

• none — Displays literal characters.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

2-169

Annotation Textarrow Properties

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

String
string

The text string. Specify this property as a quoted string for
single-line strings, or as a cell array of strings, or a padded string
matrix for multiline strings. MATLAB displays this string at the
specified location. Vertical slash characters are not interpreted
as line breaks in text strings, and are drawn as part of the text
string. See Mathematical Symbols, Greek Letters, and TeX
Characters for an example.

When the text Interpreter property is set to Tex (the default),
you can use a subset of TeX commands embedded in the
string to produce special characters such as Greek letters and
mathematical symbols. The following table lists these characters
and the character sequences used to define them.

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~

\beta β \phi \leq ≤

\gamma γ \chi χ \infty ∞

\delta δ \psi ψ \clubsuit ♣

\epsilon ε \omega ω \diamondsuit ♦

\zeta ζ \Gamma \heartsuit ♥

2-170

Annotation Textarrow Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\eta η \Delta \spadesuit ♠

\theta \Theta \leftrightarrow ↔

\vartheta \Lambda \leftarrow →

\iota ι \Xi \uparrow ↑

\kappa κ \Pi \rightarrow ↔

\lambda λ \Sigma \downarrow ↓

\mu µ \Upsilon \circ º

\nu ν \Phi \pm ±

\xi ξ \Psi \geq ≥

\pi π \Omega \propto ∝

\rho ρ \forall ∀ \partial ∂

\sigma σ \exists ∃ \bullet •
\varsigma ς \ni ∋ \div ÷

\tau τ \cong \neq ≠

\equiv ≡ \approx \aleph

\Im ℑ \Re ℜ \wp ℘

\otimes ⊗ \oplus ⊕ \oslash ∅

\cap ∩ \cup ∪ \supseteq ⊇

\supset ⊃ \subseteq ⊆ \subset ⊂

\int \in \o ο

\rfloor � \lceil � \nabla ∇

\lfloor � \cdot · \ldots ...

2-171

Annotation Textarrow Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\perp ⊥ \neg ¬ \prime ´

\wedge ∧ \times x \0 ∅

\rceil � \surd √ \mid |

\vee ∨ \varpi ϖ \copyright ©

\langle ∠ \rangle ∠

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,
you can use \fontname in combination with one of the other
modifiers:

TextBackgroundColor
ColorSpec Default: none

Color of text background rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color.

TextColor
ColorSpec Default: [0 0 0]

Color of text. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this property.

TextEdgeColor
ColorSpec or none Default: none

2-172

Annotation Textarrow Properties

Color of edge of text rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the color of the
rectangle that encloses the text.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this property.

TextLineWidth
width in points

The width of the text rectangle edge. Specify this value in points (1
point = 1/72 inch). The default TextLineWidth is 0.5 points.

TextMargin
dimension in pixels default: 5

Space around text. Specify a value in pixels that defines the space
around the text string, but within the rectangle.

TextRotation
rotation angle in degrees (default = 0)

Text orientation. This property determines the orientation of the
text string. Specify values of rotation in degrees (positive angles
cause counterclockwise rotation). Angles are absolute and not
relative to previous rotations; a rotation of 0 degrees is always
horizontal.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-173

Annotation Textarrow Properties

VerticalAlignment
top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical
justification of the text string. It determines where MATLAB
places the string with regard to the value of the Position
property. The possible values mean

• top — Place the top of the string’ s Extent rectangle at the
specified y-position.

• cap — Place the string so that the top of a capital letter is at
the specified y-position.

• middle — Place the middle of the string at the specified
y-position.

• baseline — Place font baseline at the specified y-position.

• bottom — Place the bottom of the string’s Extent rectangle at
the specified y-position.

The following picture illustrates the alignment options.

2-174

Annotation Textarrow Properties

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-175

Annotation Textbox Properties

Purpose Define annotation textbox properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Textbox
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
textbox object.

BackgroundColor
ColorSpec Default: none

Color of text background rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color.

Color
ColorSpec Default: [0 0 0]

Color of text. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this property.

EdgeColor
ColorSpec or none Default: none

Color of edge of text rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the color of the
rectangle that encloses the text.

2-176

Annotation Textbox Properties

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this property.

FaceAlpha
Scalar alpha value in range [0 1]

Transparency of object background. This property defines the
degree to which the object’s background color is transparent. A
value of 1 (the default) makes to color opaque, a value of 0 makes
the background completely transparent (i.e., invisible). The
default FaceAlpha is 1.

FitHeightToText
on | {off}

Automatically adjust text box height to fit text. MATLAB
automatically wraps text strings to fit the width of the text box.
However, if the text string is long enough, it extends beyond the
bottom of the text box.

When you set this mode to on, MATLAB automatically adjusts the
height of the text box to accommodate the string.

2-177

Annotation Textbox Properties

The fit-height-to-text behavior continues to apply if you resize the
text box from the two side handles.

However, if you resize the text box from any other handles, the
position you set is honored without regard to how the text fits
the box.

2-178

Annotation Textbox Properties

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
A name, such as Helvetica

Font family. A string specifying the name of the font to use for the
text. To display and print properly, this font must be supported on
your system. The default font is Helvetica.

FontSize
size in points

Approximate size of text characters. A value specifying the font
size to use in points. The default size is 10 (1 point = 1/72 inch).

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a
font from those available on your system. Generally, setting this
property to bold or demi causes MATLAB to use a bold font.

HorizontalAlignment
{left} | center | right

2-179

Annotation Textbox Properties

Horizontal alignment of text. This property specifies the
horizontal justification of the text string. It determines where
MATLAB places the string with regard to the point specified
by the Position property. The following picture illustrates the
alignment options.

See the Extent property for related information.

Interpreter
latex | {tex} | none

Interpret TEX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TEX instructions (default) or displays all characters literally.
The options are:

• latex — Supports the full LATEX markup language.

• tex — Supports a subset of plain TEX markup language. See
the String property for a list of supported TEX instructions.

• none — Displays literal characters.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

2-180

Annotation Textbox Properties

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Margin
dimension in pixels default: 5

Space around text. Specify a value in pixels that defines the space
around the text string, but within the rectangle.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

String
string

2-181

Annotation Textbox Properties

The text string. Specify this property as a quoted string for
single-line strings, or as a cell array of strings, or a padded string
matrix for multiline strings. MATLAB displays this string at the
specified location. Vertical slash characters are not interpreted
as line breaks in text strings, and are drawn as part of the text
string. See Mathematical Symbols, Greek Letters, and TeX
Characters for an example.

When the text Interpreter property is set to Tex (the default),
you can use a subset of TeX commands embedded in the
string to produce special characters such as Greek letters and
mathematical symbols. The following table lists these characters
and the character sequences used to define them.

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~

\beta β \phi \leq ≤

\gamma γ \chi χ \infty ∞

\delta δ \psi ψ \clubsuit ♣

\epsilon ε \omega ω \diamondsuit ♦

\zeta ζ \Gamma \heartsuit ♥

\eta η \Delta \spadesuit ♠

\theta \Theta \leftrightarrow ↔

\vartheta \Lambda \leftarrow →

\iota ι \Xi \uparrow ↑

\kappa κ \Pi \rightarrow ↔

\lambda λ \Sigma \downarrow ↓

2-182

Annotation Textbox Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\mu µ \Upsilon \circ º

\nu ν \Phi \pm ±

\xi ξ \Psi \geq ≥

\pi π \Omega \propto ∝

\rho ρ \forall ∀ \partial ∂

\sigma σ \exists ∃ \bullet •
\varsigma ς \ni ∋ \div ÷

\tau τ \cong \neq ≠

\equiv ≡ \approx \aleph

\Im ℑ \Re ℜ \wp ℘

\otimes ⊗ \oplus ⊕ \oslash ∅

\cap ∩ \cup ∪ \supseteq ⊇

\supset ⊃ \subseteq ⊆ \subset ⊂

\int \in \o ο

\rfloor � \lceil � \nabla ∇

\lfloor � \cdot · \ldots ...

\perp ⊥ \neg ¬ \prime ´

\wedge ∧ \times x \0 ∅

\rceil � \surd √ \mid |

\vee ∨ \varpi ϖ \copyright ©

\langle ∠ \rangle ∠

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,

2-183

Annotation Textbox Properties

you can use \fontname in combination with one of the other
modifiers:

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

VerticalAlignment
top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical
justification of the text string. It determines where MATLAB
places the string with regard to the value of the Position
property. The possible values mean

• top — Place the top of the string’ s Extent rectangle at the
specified y-position.

• cap — Place the string so that the top of a capital letter is at
the specified y-position.

• middle — Place the middle of the string at the specified
y-position.

• baseline — Place font baseline at the specified y-position.

• bottom — Place the bottom of the string’s Extent rectangle at
the specified y-position.

The following picture illustrates the alignment options.

2-184

Annotation Textbox Properties

2-185

ans

Purpose Most recent answer

Syntax ans

Description MATLAB creates the ans variable automatically when you specify no
output argument.

Examples The statement

2+2

is the same as

ans = 2+2

See Also display

2-186

any

Purpose Determine whether any array elements are nonzero

Syntax B = any(A)
B = any(A,dim)

Description B = any(A) tests whether any of the elements along various dimensions
of an array is a nonzero number or is logical 1 (true). any ignores
entries that are NaN (Not a Number).

If A is a vector, any(A) returns logical 1 (true) if any of the elements
of A is a nonzero number or is logical 1 (true), and returns logical 0
(false) if all the elements are zero.

If A is a matrix, any(A) treats the columns of A as vectors, returning a
row vector of logical 1’s and 0’s.

If A is a multidimensional array, any(A) treats the values along the
first nonsingleton dimension as vectors, returning a logical condition
for each vector.

B = any(A,dim) tests along the dimension of A specified by scalar dim.

Examples Example 1 – Reducing a Logical Vector to a Scalar Condition

Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical 1 (true) only where A is less than
one half:

0 0 1 1 1 1 0

2-187

any

The any function reduces such a vector of logical conditions to a single
condition. In this case, any(B) yields logical 1.

This makes any particularly useful in if statements:

if any(A < 0.5)do something
end

where code is executed depending on a single condition, not a vector
of possibly conflicting conditions.

Example 2– Reducing a Logical Matrix to a Scalar Condition

Applying the any function twice to a matrix, as in any(any(A)), always
reduces it to a scalar condition.

any(any(eye(3)))
ans =

1

Example 3 – Testing Arrays of Any Dimension

You can use the following type of statement on an array of any
dimensions. This example tests a 3-D array to see if any of its elements
are greater than 3:

x = rand(3,7,5) * 5;

any(x(:) > 3)
ans =

1

or less than zero:

any(x(:) < 0)
ans =

0

See Also all, logical operators (elementwise and short-circuit), relational
operators, colon

2-188

any

Other functions that collapse an array’s dimensions include max, mean,
median, min, prod, std, sum, and trapz.

2-189

area

Purpose Filled area 2-D plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax area(Y)
area(X,Y)
area(...,basevalue)
area(...,'PropertyName',PropertyValue,...)
area(axes_handle,...)
h = area(...)
hpatches = area('v6',...)

Description An area graph displays elements in Y as one or more curves and fills the
area beneath each curve. When Y is a matrix, the curves are stacked
showing the relative contribution of each row element to the total height
of the curve at each x interval.

area(Y) plots the vector Y or the sum of each column in matrix Y. The
x-axis automatically scales to 1:size(Y,1).

area(X,Y) For vectors X and Y, area(X,Y) is the same as plot(X,Y)
except that the area between 0 and Y is filled. When Y is a matrix,
area(X,Y) plots the columns of Y as filled areas. For each X, the net
result is the sum of corresponding values from the columns of Y.

If X is a vector, length(X) must equal length(Y). If X is a matrix,
size(X) must equal size(Y).

2-190

area

area(...,basevalue) specifies the base value for the area fill.
The default basevalue is 0. See the BaseValue property for more
information.

area(...,'PropertyName',PropertyValue,...) specifies property
name and property value pairs for the patch graphics object created
by area.

area(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = area(...) returns handles of areaseries graphics objects.

Backward-Compatible Version

hpatches = area('v6',...) returns the handles of patch objects
instead of areaseries objects for compatibility with MATLAB 6.5 and
earlier. See patch object properties for a discussion of the properties you
can set to control the appearance of these area graphs.

See “Plot Objects and Backward Compatibility” for more information.

Areaseries
Objects

Creating an area graph of an m-by-n matrix creates n areaseries objects
(i.e., one per column), whereas a 1-by-n vector creates one area object.

Some areaseries object properties that you set on an individual
areaseries object set the values for all areaseries objects in the graph.
See the property descriptions for information on specific properties.

Examples Stacked Area Graph

This example plots the data in the variable Y as an area graph. Each
subsequent column of Y is stacked on top of the previous data. The figure
colormap controls the coloring of the individual areas. You can explicitly
set the color of an area using the EdgeColor and FaceColor properties.

Y = [1, 5, 3;
3, 2, 7;
1, 5, 3;
2, 6, 1];

area(Y)

2-191

area

grid on
colormap summer
set(gca,'Layer','top')
title 'Stacked Area Plot'

Adjusting the Base Value

The area function uses a y-axis value of 0 as the base of the filled areas.
You can change this value by setting the area BaseValue property. For
example, negate one of the values of Y from the previous example and
replot the data.

Y(3,1) = -1; % Was 1
h = area(Y);
set(gca,'Layer','top')
grid on
colormap summer

2-192

area

The area graph now looks like this:

Adjusting the BaseValue property improves the appearance of the
graph:

set(h,'BaseValue',-2)

Setting the BaseValue property on one areaseries object sets the values
of all objects.

2-193

area

Specifying Colors and Line Styles

You can specify the colors of the filled areas and the type of lines used to
separate them.

h = area(Y,-2); % Set BaseValue via argument
set(h(1),'FaceColor',[.5 0 0])
set(h(2),'FaceColor',[.7 0 0])
set(h(3),'FaceColor',[1 0 0])
set(h,'LineStyle',':','LineWidth',2) % Set
all to same value

2-194

area

See Also bar, plot, sort

“Area, Bar, and Pie Plots” on page 1-87 for related functions

“Area Graphs” for more examples

Areaseries Properties for property descriptions

2-195

Areaseries Properties

Purpose Define areaseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See “Plot Objects” for more information on areaseries objects.

Areaseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

BaseValue
double: y-axis value

Value where filled area base is drawn. Specify the value along the
y-axis at which MATLAB draws the baseline of the bottommost
filled area.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

2-196

Areaseries Properties

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

2-197

Areaseries Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

2-198

Areaseries Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string

Label used by plot legends. The legend function, the figure’s
active legend, and the plot browser use this text when displaying
labels for this object.

2-199

Areaseries Properties

EdgeColor
{[0 0 0]} | none | ColorSpec

Color of line that separates filled areas. You can set the color of
the edges of filled areas to a three-element RGB vector or one of
the MATLAB predefined names, including the string none. The
default edge color is black. See ColorSpec for more information
on specifying color.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

2-200

Areaseries Properties

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

2-201

Areaseries Properties

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

2-202

Areaseries Properties

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

2-203

Areaseries Properties

HitTestArea
on | {off}

Select areaseries object on filled area or extent of graph. This
property enables you to select areaseries objects in two ways:

• Select by clicking bars (default).

• Select by clicking anywhere in the extent of the area plot.

When HitTestArea is off, you must click the bars to select the
bar object. When HitTestArea is on, you can select the bar
object by clicking anywhere within the extent of the bar graph
(i.e., anywhere within a rectangle that encloses all the bars).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

2-204

Areaseries Properties

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You

2-205

Areaseries Properties

can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

2-206

Areaseries Properties

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For areaseries objects,
Type is ’hggroup’.

The following statement finds all the hggroup objects in the
current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
vector or matrix

2-207

Areaseries Properties

The x-axis values for a graph. The x-axis values for graphs
are specified by the X input argument. If XData is a vector,
length(XData) must equal length(YData) and must be
monotonic. If XData is a matrix, size(XData) must equal
size(YData) and each column must be monotonic.

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped. See
“Setting the Axis Limits on Contour Plots” on page 2-623 for more
information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the

2-208

Areaseries Properties

data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector or matrix

Area plot data. YData contains the data plotted as filled areas (the
Y input argument). If YData is a vector, area creates a single filled
area whose upper boundary is defined by the elements of YData.
If YData is a matrix, area creates one filled area per column,
stacking each on the previous plot.

The input argument Y in the area function calling syntax assigns
values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the

2-209

Areaseries Properties

data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-210

arrayfun

Purpose Apply function to each element of array

Syntax A = arrayfun(fun, S)
A = arrayfun(fun, S, T, ...)
[A, B, ...] = arrayfun(fun, S, ...)
[A, ...] = arrayfun(fun, S, ..., 'param1', value1, ...)

Description A = arrayfun(fun, S) applies the function specified by fun to each
element of array S, and returns the results in array A. The value A
returned by arrayfun is the same size as S, and the (I,J,...)th
element of A is equal to fun(S(I,J,...)). The first input argument
fun is a function handle to a function that takes one input argument
and returns a scalar value. fun must return values of the same class
each time it is called.

If fun is bound to more than one built-in or M-file (that is, if it
represents a set of overloaded functions), then the class of the values
that arrayfun actually provides as input arguments to fun determines
which functions are executed.

The order in which arrayfun computes elements of A is not specified
and should not be relied upon.

A = arrayfun(fun, S, T, ...) evaluates fun using elements of the
arrays S, T, ... as input arguments. The (I,J,...)th element of A is
equal to fun(S(I,J,...), T(I,J,...), ...). All input arguments
must be of the same size.

[A, B, ...] = arrayfun(fun, S, ...) evaluates fun, which is a
function handle to a function that returns multiple outputs, and returns
arrays A, B, ..., each corresponding to one of the output arguments
of fun. arrayfun calls fun each time with as many outputs as there
are in the call to arrayfun. fun can return output arguments having
different classes, but the class of each output must be the same each
time fun is called.

[A, ...] = arrayfun(fun, S, ..., 'param1', value1, ...)
enables you to specify optional parameter name and value pairs.

2-211

arrayfun

Parameters recognized by arrayfun are shown below. Enclose each
parameter name with single quotes.

Parameter Name Parameter Value

UniformOutput A logical 1 (true) or 0 (false), indicating
whether or not the outputs of fun can
be returned without encapsulation in a
cell array.

If true (the default), fun must return
scalar values that can be concatenated
into an array. These values can also be a
cell array. If false, arrayfun returns a
cell array (or multiple cell arrays), where
the (I,J,...)th cell contains the value
fun(S(I,J,...), ...).

ErrorHandler A function handle, specifying the
function that arrayfun is to call if the
call to fun fails. If an error handler is not
specified, arrayfun rethrows the error
from the call to fun.

Remarks MATLAB provides two functions that are similar to arrayfun; these
are structfun and cellfun. With structfun, you can apply a given
function to all fields of one or more structures. With cellfun, you apply
the function to all cells of one or more cell arrays.

Examples Example 1 — Operating on a Single Input.

Create a 1-by-15 structure array with fields f1 and f2, each field
containing an array of a different size. Make each f1 field be unequal to
the f2 field at that same array index:

for k=1:15
s(k).f1 = rand(k+3,k+7) * 10;
s(k).f2 = rand(k+3,k+7) * 10;

2-212

arrayfun

end

Set three f1 fields to be equal to the f2 field at that array index:

s(3).f2 = s(3).f1;
s(9).f2 = s(9).f1;
s(12).f2 = s(12).f1;

Use arrayfun to compare the fields at each array index. This compares
the array of s(1).f1 with that of s(1).f2, the array of s(2).f1 with
that of s(2).f2, and so on through the entire structure array.

The first argument in the call to arrayfun is an anonymous function.
Anonymous functions return a function handle, which is the required
first input to arrayfun:

z = arrayfun(@(x)isequal(x.f1, x.f2), s)
z =

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

Example 2 — Operating on Multiple Inputs.

This example performs the same array comparison as in the previous
example, except that it compares the some field of more than one
structure array rather than different fields of the same structure array.
This shows how you can use more than one array input with arrayfun.

Make copies of array s, created in the last example, to arrays t and u.

t = s; u = s;

Make one element of structure array t unequal to the same element of
s. Do the same with structure array u:

t(4).f1(12)=0;
u(14).f1(6)=0;

Compare field f1 of the three arrays s, t, and u:

z = arrayfun(@(a,b,c)isequal(a.f1, b.f1, c.f1), s, t, u)
z =

2-213

arrayfun

1 1 1 0 1 1 1 1 1 1 1 1 1 0 1

Example 3 — Generating Nonuniform Output.

Generate a 1-by-3 structure array s having random matrices in field f1:

rand('state', 0);
s(1).f1 = rand(7,4) * 10;
s(2).f1 = rand(3,7) * 10;
s(3).f1 = rand(5,5) * 10;

Find the maximum for each f1 vector. Because the output is nonscalar,
specify the UniformOutput option as false:

sMax = arrayfun(@(x) max(x.f1), s, 'UniformOutput', false)
sMax =

[1x4 double] [1x7 double] [1x5 double]

sMax{:}
ans =

9.5013 9.2181 9.3547 8.1317
ans =

2.7219 9.3181 8.4622 6.7214 8.3812 8.318 7.0947
ans =

6.8222 8.6001 8.9977 8.1797 8.385

Find the mean for each f1 vector:

sMean = arrayfun(@(x) mean(x.f1), s, ...
'UniformOutput', false)

sMean =
[1x4 double] [1x7 double] [1x5 double]

sMean{:}
ans =

6.2628 6.2171 5.4231 3.3144
ans =

1.6209 7.079 5.7696 4.6665 5.1301 5.7136 4.8099
ans =

2-214

arrayfun

3.8195 5.8816 6.9128 4.9022 5.9541

Example 4 — Assigning to More Than One Output Variable.

The next example uses the lu function on the same structure array,
returning three outputs from arrayfun:

[l u p] = arrayfun(@(x)lu(x.f1), s, 'UniformOutput', false)
l =

[7x4 double] [3x3 double] [5x5 double]
u =

[4x4 double] [3x7 double] [5x5 double]
p =

[7x7 double] [3x3 double] [5x5 double]

l{3}
ans =

1 0 0 0 0
0.44379 1 0 0 0
0.79398 0.79936 1 0 0
0.27799 0.066014 -0.77517 1 0
0.28353 0.85338 0.29223 0.67036 1

u{3}
ans =

6.8222 3.7837 8.9977 3.4197 3.0929
0 6.9209 4.2232 1.3796 7.0124
0 0 -4.0708 -0.40607 -2.3804
0 0 0 6.8232 2.1729
0 0 0 0 -0.35098

p{3}
ans =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

2-215

arrayfun

See Also structfun, cellfun, spfun, function_handle, cell2mat

2-216

ascii

Purpose Set FTP transfer type to ASCII

Syntax ascii(f)

Description ascii(f) sets the download and upload FTP mode to ASCII, which
converts new lines, where f was created using ftp. Use this function for
text files only, including HTML pages and Rich Text Format (RTF) files.

Examples Connect to the MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp
function to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: ascii

Note that the FTP object is now set to ASCII mode.

See Also ftp, binary

2-217

asec

Purpose Inverse secant; result in radians

Syntax Y = asec(X)

Description Y = asec(X) returns the inverse secant (arcsecant) for each element
of X.

The asec function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse secant over the domains and .

x1 = -5:0.01:-1;
x2 = 1:0.01:5;
plot(x1,asec(x1),x2,asec(x2)), grid on

2-218

asec

Definition The inverse secant can be defined as

Algorithm asec uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also asecd, asech, sec

2-219

http://www.netlib.org

asecd

Purpose Inverse secant; result in degrees

Syntax Y = asecd(X)

Description Y = asecd(X) is the inverse secant, expressed in degrees, of the
elements of X.

See Also secd, asec

2-220

asech

Purpose Inverse hyperbolic secant

Syntax Y = asech(X)

Description Y = asech(X) returns the inverse hyperbolic secant for each element
of X.

The asech function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic secant over the domain .

x = 0.01:0.001:1;
plot(x,asech(x)), grid on

Definition The hyperbolic inverse secant can be defined as

2-221

asech

Algorithm asech uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also asec, sech

2-222

http://www.netlib.org

asin

Purpose Inverse sine; result in radians

Syntax Y = asin(X)

Description Y = asin(X) returns the inverse sine (arcsine) for each element of
X. For real elements of X in the domain , asin(X) is in the
range . For real elements of x outside the range ,
asin(X) is complex.

The asin function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse sine function over the domain .

x = -1:.01:1;
plot(x,asin(x)), grid on

2-223

asin

Definition The inverse sine can be defined as

Algorithm asin uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also asind, asinh, sin, sind, sinh

2-224

http://www.netlib.org

asind

Purpose Inverse sine; result in degrees

Syntax

Description Y = asind(X) is the inverse sine, expressed in degrees, of the elements
of X.

See Also asin, asinh, sin, sind, sinh

2-225

asinh

Purpose Inverse hyperbolic sine

Syntax Y = asinh(X)

Description Y = asinh(X) returns the inverse hyperbolic sine for each element of X.

The asinh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic sine function over the domain .

x = -5:.01:5;
plot(x,asinh(x)), grid on

Definition The hyperbolic inverse sine can be defined as

2-226

asinh

Algorithm asinh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also asin, asind, sin, sinh, sind

2-227

http://www.netlib.org

assert

Purpose Generate error when condition is violated

Syntax assert(expression)
assert(expression, 'errmsg')
assert(expression, 'errmsg', value1, value2, ...)
assert(expression, 'msg_id', 'errmsg', value1, value2, ...)

Description assert(expression) evaluates expression and, if it is false, displays
the error message: Assertion Failed.

assert(expression, 'errmsg') evaluates expression and, if it is
false, displays the string contained in errmsg. This string must be
enclosed in single quotation marks. When errmsg is the last input
to assert, MATLAB displays it literally, without performing any
substitutions on the characters in errmsg.

assert(expression, 'errmsg', value1, value2, ...) evaluates
expression and, if it is false, displays the formatted string contained
in errmsg. The errmsg string can include escape sequences such as \t
or \n, as well as any of the C language conversion operators supported
by the sprintf function (e.g., %s or %d). Additional arguments
value1, value2, etc. provide values that correspond to and replace
the conversion operators.

See “Formatting Strings”in the MATLAB Programming documentation
for more detailed information on using string formatting commands.

MATLAB makes substitutions for escape sequences and conversion
operators in errmsg in the same way that it does for the sprintf
function.

assert(expression, 'msg_id', 'errmsg', value1, value2, ...)
evaluates expression and, if it is false, displays the formatted string
errmsg, also tagging the error with the message identifier msg_id. See
“Message Identifiers” in the MATLAB Programming documentation
for information.

2-228

assert

Examples This function tests input arguments using assert:

function write2file(varargin)
min_inputs = 3;
assert(nargin >= min_inputs, ...

'You must call function %s with at least %d inputs', ...
mfilename, min_inputs)

infile = varargin{1};
assert(ischar(infile), ...

'First argument must be a filename.')
assert(exist(infile)~=0, 'File %s not found.', infile)

fid = fopen(infile, 'w');
assert(fid > 0, 'Cannot open file %s for writing', infile)

fwrite(fid, varargin{2}, varargin{3});

See Also error, eval, sprintf

2-229

assignin

Purpose Assign value to variable in specified workspace

Syntax assignin(ws, 'var', val)

Description assignin(ws, 'var', val) assigns the value val to the variable var
in the workspace ws. var is created if it doesn’t exist. ws can have a
value of 'base' or 'caller' to denote the MATLAB base workspace or
the workspace of the caller function.

The assignin function is particularly useful for these tasks:

• Exporting data from a function to the MATLAB workspace

• Within a function, changing the value of a variable that is defined
in the workspace of the caller function (such as a variable in the
function argument list)

Remarks The MATLAB base workspace is the workspace that is seen from
the MATLAB command line (when not in the debugger). The caller
workspace is the workspace of the function that called the M-file. Note
that the base and caller workspaces are equivalent in the context of an
M-file that is invoked from the MATLAB command line.

Examples This example creates a dialog box for the image display function,
prompting a user for an image name and a colormap name. The
assignin function is used to export the user-entered values to the
MATLAB workspace variables imfile and cmap.

prompt = {'Enter image name:','Enter colormap name:'};
title = 'Image display - assignin example';
lines = 1;
def = {'my_image','hsv'};
answer = inputdlg(prompt,title,lines,def);
assignin('base','imfile',answer{1});
assignin('base','cmap',answer{2});

2-230

assignin

See Also evalin

2-231

atan

Purpose Inverse tangent; result in radians

Syntax Y = atan(X)

Description Y = atan(X) returns the inverse tangent (arctangent) for each element
of X. For real elements of X, atan(X) is in the range .

The atan function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse tangent function over the domain .

x = -20:0.01:20;
plot(x,atan(x)), grid on

Definition The inverse tangent can be defined as

2-232

atan

Algorithm atan uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also atan2, tan, atand, atanh

2-233

http://www.netlib.org

atan2

Purpose Four-quadrant inverse tangent

Syntax P = atan2(Y,X)

Description P = atan2(Y,X) returns an array P the same size as X and Y containing
the element-by-element, four-quadrant inverse tangent (arctangent) of
the real parts of Y and X. Any imaginary parts of the inputs are ignored.

Elements of P lie in the closed interval [-pi,pi], where pi is the
MATLAB floating-point representation of . atan uses sign(Y) and
sign(X) to determine the specific quadrant.

atan2(Y,X) contrasts with atan(Y/X), whose results are limited to the
interval , or the right side of this diagram.

Examples Any complex number is converted to polar coordinates with

r = abs(z)
theta = atan2(imag(z),real(z))

For example,

z = 4 + 3i;
r = abs(z)
theta = atan2(imag(z),real(z))

2-234

atan2

r =
5

theta =
0.6435

This is a common operation, so MATLAB provides a function, angle(z),
that computes theta = atan2(imag(z),real(z)).

To convert back to the original complex number

z = r *exp(i *theta)
z =

4.0000 + 3.0000i

Algorithm atan2 uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also angle, atan, atanh

2-235

http://www.netlib.org

atand

Purpose Inverse tangent; result in degrees

Syntax Y = atand(X)

Description Y = atand(X) is the inverse tangent, expressed in degrees, of the
elements of X.

See Also tand, atan

2-236

atanh

Purpose Inverse hyperbolic tangent

Syntax Y = atanh(X)

Description The atanh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = atanh(X) returns the inverse hyperbolic tangent for each element
of X.

Examples Graph the inverse hyperbolic tangent function over the domain
.

x = -0.99:0.01:0.99;
plot(x,atanh(x)), grid on

Definition The hyperbolic inverse tangent can be defined as

2-237

atanh

Algorithm atanh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also atan2, atan, tanh

2-238

http://www.netlib.org

audioplayer

Purpose Create audio player object

Syntax player = audioplayer(Y, Fs)
player = audioplayer(Y, Fs, nBits)
player = audioplayer(Y, Fs, nBits, ID)
player = audioplayer(R)
player = audioplayer(R, ID)

Description
Note To use all of the features of the audio player object, your system
needs a properly installed and configured sound card with 8- and 16-bit
I/O, two channels, and support for sampling rates of up to 48 kHz.

player = audioplayer(Y, Fs) creates an audio player object for
signal Y, using sample rate Fs. The function returns player, a handle
to the audio player object. The audio player object supports methods
and properties that you can use to control how the audio data is played.

The input signal Y can be a vector or two-dimensional array containing
single, double, int8, uint8, or int16 MATLAB data types. Fs is the
sampling rate in Hz to use for playback. Valid values for Fs depend on
the specific audio hardware installed. Typical values supported by most
sound cards are 8000, 11025, 22050, and 44100 Hz.

player = audioplayer(Y, Fs, nBits) creates an audio player object
and uses nBits bits per sample for floating point signal Y. Valid values
for nBits are 8, 16, and 24 on Windows, 8 and 16 on UNIX. The default
number of bits per sample for floating point signals is 16.

player = audioplayer(Y, Fs, nBits, ID) creates an audio player
object using audio device identifier ID for output. If ID equals -1, the
default output device will be used. This option is only available on
Windows.

player = audioplayer(R) creates an audio player object using audio
recorder object R.

2-239

audioplayer

player = audioplayer(R, ID) creates an audio player object from
audio recorder object R using audio device identifier ID for output. This
option is only available on Windows.

Remarks

The value range of the input sample depends on the MATLAB data
type. The following table lists these ranges.

Data Type Input Sample Value Range

int8 -128 to 127

uint8 0 to 255

int16 -32768 to 32767

single -1 to 1

double -1 to 1

Example Load a sample audio file of Handel’s Hallelujah Chorus, create an audio
player object, and play back only the first three seconds. y contains
the audio samples and Fs is the sampling rate. You can use any of the
audioplayer functions listed above on the player:

load handel;
player = audioplayer(y, Fs);
play(player,[1 (get(player, 'SampleRate')*3)]);

To stop the playback, use this command:

stop(player); % Equivalent to player.stop

Methods After you create an audio player object, you can use the methods listed
below on that object. player represents a handle to the audio player
object.

2-240

audioplayer

Method Description

play(player)

play(player, start)

play(player, [start stop])

play(player, range)

Starts playback from the
beginning and plays to the
end of audio player object player.
Play audio from the sample
indicated by start to the end, or
from the sample indicated by start
up to the sample indicated by stop.
The values of start and stop can
also be specified in a two-element
vector range.

playblocking(player)

playblocking(player,
start)

playblocking(player,
[start stop])

playblocking(player,
range)

Same as play, but does not return
control until playback completes.

stop(player) Stops playback.

pause(player) Pauses playback.

resume(player) Restarts playback from where
playback was paused.

isplaying(player) Indicates whether playback is in
progress. If 0, playback is not
in progress. If 1, playback is in
progress.

display(player)

disp(player)

get(player)

Displays all property information
about audio player player.

2-241

audioplayer

Properties Audio player objects have the properties listed below. To set a
user-settable property, use this syntax:

set(player, 'property1', value,'property2',value,...)

To view a read-only property,

get(player,'property') % Displays 'property' setting.

Property Description Type

Type Name of the object’s class. Read-only

SampleRate Sampling frequency in Hz. User-settable

BitsPerSample Number of bits per sample. Read-only

NumberOfChannels Number of channels. Read-only

TotalSamples Total length, in samples, of the
audio data.

Read-only

Running Status of the audio player
('on' or 'off').

Read-only

CurrentSample Current sample being played
by the audio output device (if it
is not playing, CurrentSample
is the next sample to be played
with play or resume).

Read-only

UserData User data of any type. User-settable

Tag User-specified object label
string.

User-settable

For information on using the following four properties, see Creating
Timer Callback Functions in the MATLAB documentation. Note that
for audio player object callbacks, eventStruct (event) is currently
empty ([]).

2-242

audioplayer

Property Description Type

TimerFcn Handle to a user-specified
callback function that is
executed repeatedly (at
TimerPeriod intervals) during
playback.

User-settable

TimerPeriod Time, in seconds, between
TimerFcn callbacks.

User-settable

StartFcn Handle to a user-specified
callback function that is
executed once when playback
starts.

User-settable

StopFcn Handle to a user-specified
callback function that is
executed once when playback
stops.

User-settable

See Also audiorecorder, sound, wavplay, wavwrite, wavread, get, set, methods

2-243

audiorecorder

Purpose Create audio recorder object

Syntax y = audiorecorder
y = audiorecorder(Fs, nbits, nchans)
y = audiorecorder(Fs, nbits, channels, id)

Description
Note To use all of the features of the audiorecorder object, your system
must have a properly installed and configured sound card with 8- and
16-bit I/O and support for sampling rates of up to 48 kHz.

y = audiorecorder creates an 8000 Hz, 8-bit, 1 channel audiorecorder
object. y is a handle to the object. The audiorecorder object supports
methods and properties that you can use to record audio data.

y = audiorecorder(Fs, nbits, nchans) creates an audiorecorder
object using the sampling rate Fs (in Hz), the sample size nbits, and
the number of channelsnchans. Fs can be any sampling rate supported
by the audio hardware. Common sampling rates are 8000, 11025,
22050, and 44100. The value of nbits must be 8, 16, or 24, on Windows,
and 8 or 16 on UNIX. The number of channels, nchans must be 1 (mono)
or 2 (stereo).

y = audiorecorder(Fs, nbits, channels, id) creates an
audiorecorder object using the audio device specified by its id for input.
If id equals -1, the default input device will be used. This option is
only available on Windows.

Examples Example 1

Using a microphone, record your voice, using a sample rate of 22050 Hz,
16 bits per sample, and one channel. Speak into the microphone, then
pause the recording. Play back what you’ve recorded so far. Record
some more, then stop the recording. Finally, return the recorded data to
MATLAB as an int16 array.

r = audiorecorder(22050, 16, 1);

2-244

audiorecorder

record(r); % speak into microphone...
pause(r);
p = play(r); % listen
resume(r); % speak again
stop(r);
p = play(r); % listen to complete recording
mySpeech = getaudiodata(r, 'int16'); % get data as int16 array

Remarks The current implementation of audiorecorder is not intended for long,
high-sample-rate recording because it uses system memory for storage
and does not use disk buffering. When large recordings are attempted,
MATLAB performance may degrade.

Methods After you create an audiorecorder object, you can use the methods
listed below on that object. y represents the name of the returned
audiorecorder object

Method Description

record(y)

record(y,length)

Starts recording.

Records for length number of seconds.

recordblocking(y,length) Same as record, but does not return
control until recording completes.

stop(y) Stops recording.

pause(y) Pauses recording.

resume(y) Restarts recording from where
recording was paused.

isrecording(y) Indicates the status of recording. If
0, recording is not in progress. If 1,
recording is in progress.

play(y) Creates an audioplayer, plays the
recorded audio data, and returns a
handle to the created audioplayer.

2-245

audiorecorder

Method Description

getplayer(y) Creates an audioplayer and returns a
handle to the created audioplayer.

getaudiodata(y)

getaudiodata(y,'type')

Returns the recorded audio data to
the MATLAB workspace. type is a
string containing the desired data
type. Supported data types are double,
single, int16, int8, or uint8. If type
is omitted, it defaults to 'double'.
For double and single, the array
contains values between -1 and 1. For
int8, values are between -128 to 127.
For uint8, values are from 0 to 255.
For int16, values are from -32768 to
32767. If the recording is in mono, the
returned array has one column. If it is
in stereo, the array has two columns,
one for each channel.

display(y)

disp(y)

get(y)

Displays all property information
about audio recorder y.

Properties Audio recorder objects have the properties listed below. To set a
user-settable property, use this syntax:

set(y, 'property1', value,'property2',value,...)

To view a read-only property,

get(y,'property') %displays 'property' setting.

2-246

audiorecorder

Property Description Type

Type Name of the object’s class. Read-only

SampleRate Sampling frequency in Hz. Read-only

BitsPerSample Number of bits per recorded
sample.

Read-only

NumberOfChannels Number of channels of
recorded audio.

Read-only

TotalSamples Total length, in samples, of
the recording.

Read-only

Running Status of the audio recorder
('on' or 'off').

Read-only

CurrentSample Current sample being
recorded by the audio
output device (if it is not
recording, currentsample
is the next sample to be
recorded with record or
resume).

Read-only

UserData User data of any type. User-settable

For information on using the following four properties, see Creating
Timer Callback Functions in the MATLAB documentation. Note that
for audio object callbacks, eventStruct (event) is currently empty
([]).

TimerFcn Handle to a user-specified
callback function that is
executed repeatedly (at
TimerPeriod intervals)
during recording.

User-settable

TimerPeriod Time, in seconds, between
TimerFcn callbacks.

User-settable

2-247

audiorecorder

Property Description Type

StartFcn Handle to a user-specified
callback function that
is executed once when
recording starts.

User-settable

StopFcn Handle to a user-specified
callback function that
is executed once when
recording stops.

User-settable

NumberOfBuffers Number of buffers used
for recording (you should
adjust this only if you have
skips, dropouts, etc., in your
recording).

User-settable

BufferLength Length in seconds of buffer
(you should adjust this only
if you have skips, dropouts,
etc., in your recording).

User-settable

Tag User-specified object label
string.

User-settable

See Also audioplayer, wavread, wavrecord, wavwrite, get, set, methods

2-248

aufinfo

Purpose Information about NeXT/SUN (.au) sound file

Syntax [m d] = aufinfo(aufile)

Description [m d] = aufinfo(aufile) returns information about the contents of
the AU sound file specified by the string aufile.

m is the string 'Sound (AU) file', if filename is an AU file.
Otherwise, it contains an empty string ('').

d is a string that reports the number of samples in the file and the
number of channels of audio data. If filename is not an AU file, it
contains the string 'Not an AU file'.

See Also auread

2-249

auread

Purpose Read NeXT/SUN (.au) sound file

Graphical
Interface

As an alternative to auread, use the Import Wizard. To activate the
Import Wizard, select Import data from the File menu.

Syntax y = auread('aufile')
[y,Fs,bits] = auread('aufile')
[...] = auread('aufile',N)
[...] = auread('aufile',[N1 N2])
siz = auread('aufile','size')

Description y = auread('aufile') loads a sound file specified by the string
aufile, returning the sampled data in y. The .au extension is appended
if no extension is given. Amplitude values are in the range [-1,+1].
auread supports multichannel data in the following formats:

• 8-bit mu-law

• 8-, 16-, and 32-bit linear

• Floating-point

[y,Fs,bits] = auread('aufile') returns the sample rate (Fs) in
Hertz and the number of bits per sample (bits) used to encode the
data in the file.

[...] = auread('aufile',N) returns only the first N samples from
each channel in the file.

[...] = auread('aufile',[N1 N2]) returns only samples N1
through N2 from each channel in the file.

siz = auread('aufile','size') returns the size of the audio data
contained in the file in place of the actual audio data, returning the
vector siz = [samples channels].

See Also auwrite, wavread

2-250

auwrite

Purpose Write NeXT/SUN (.au) sound file

Syntax auwrite(y,'aufile')
auwrite(y,Fs,'aufile')
auwrite(y,Fs,N,'aufile')
auwrite(y,Fs,N,'method','aufile')

Description auwrite(y,'aufile') writes a sound file specified by the string
aufile. The data should be arranged with one channel per column.
Amplitude values outside the range [-1,+1] are clipped prior to
writing. auwrite supports multichannel data for 8-bit mu-law and 8-
and 16-bit linear formats.

auwrite(y,Fs,'aufile') specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N,'aufile') selects the number of bits in the encoder.
Allowable settings are N = 8 and N = 16.

auwrite(y,Fs,N,'method','aufile') allows selection of the encoding
method, which can be either mu or linear. Note that mu-law files must
be 8-bit. By default, method = 'mu'.

See Also auread, wavwrite

2-251

avifile

Purpose Create new Audio/Video Interleaved (AVI) file

Syntax aviobj = avifile(filename)
aviobj = avifile(filename, 'Param1', Val1, 'Param2', Val2,

...)

Description aviobj = avifile(filename) creates an avifile object, giving it
the name specified in filename, using default values for all avifile
object properties. AVI is a file format for storing audio and video data.
If filename does not include an extension, avifile appends .avi to the
filename. To close all open AVI files, use the clear mex command.

avifile returns a handle to an AVI file object aviobj. You use this
object to refer to the AVI file in other functions. An AVI file object
supports properties and methods that control aspects of the AVI file
created.

aviobj = avifile(filename, 'Param1', Val1, 'Param2',
Val2,...) creates an avifile object with the property values specified
by parameter/value pairs. This table lists available parameters.

Parameter Value Default

'colormap' An m-by-3 matrix defining the
colormap to be used for indexed
AVI movies, where m must be no
greater than 256 (236 if using
Indeo compression). You must
set this parameter before calling
addframe, unless you are using
addframe with the MATLAB
movie syntax.

There is
no default
colormap.

'compression' A text string specifying the
compression codec to use.

2-252

avifile

Parameter Value Default

On Windows:
'Indeo3'
'Indeo5'
'Cinepak'
'MSVC'
'RLE'
'None'

On UNIX:
'None'

'Indeo5' on
Windows.
'None' on
UNIX.

To use a custom compression
codec, specify the four-character
code that identifies the codec
(typically included in the codec
documentation). The addframe
function reports an error if
it cannot find the specified
custom compressor. You must
set this parameter before calling
addframe.

'fps' A scalar value specifying the
speed of the AVI movie in frames
per second (fps).

15 fps

'keyframe' For compressors that support
temporal compression, this is the
number of key frames per second.

2.1429 key
frames per
second.

2-253

avifile

Parameter Value Default

'quality' A number between 0 and 100.
This parameter has no effect on
uncompressed movies. Higher
quality numbers result in higher
video quality and larger file
sizes. Lower quality numbers
result in lower video quality and
smaller file sizes. You must set
this parameter before calling
addframe.

75

'videoname' A descriptive name for the video
stream. This parameter must be
no greater than 64 characters
long and must be set before using
addframe.

The default is
the filename.

You can also use structure syntax (also called dot notation) to set
avifile object properties. The property name must be typed in full,
however it is not case sensitive. For example, to set the quality
property to 100, use the following syntax:

aviobj = avifile('myavifile');
aviobj.quality = 100;

All the field names of an avifile object are the same as the parameter
names listed in the table, except for the keyframe parameter. To set this
property using dot notation, specify the KeyFramePerSec property. For
example, to change the value of keyframe to 2.5, type

aviobj.KeyFramePerSec = 2.5;

Example This example shows how to use the avifile function to create the AVI
file example.avi.

fig=figure;
set(fig,'DoubleBuffer','on');

2-254

avifile

set(gca,'xlim',[-80 80],'ylim',[-80 80],...
'NextPlot','replace','Visible','off')

mov = avifile('example.avi')
x = -pi:.1:pi;
radius = 0:length(x);
for k=1:length(x)
h = patch(sin(x)*radius(k),cos(x)*radius(k),...

[abs(cos(x(k))) 0 0]);
set(h,'EraseMode','xor');
F = getframe(gca);
mov = addframe(mov,F);

end
mov = close(mov);

See Also addframe, close, movie2avi

2-255

aviinfo

Purpose Information about Audio/Video Interleaved (AVI) file

Syntax fileinfo = aviinfo(filename)

Description fileinfo = aviinfo(filename) returns a structure whose fields
contain information about the AVI file specified in the string filename.
If filename does not include an extension, then .avi is used. The
file must be in the current working directory or in a directory on the
MATLAB path.

The set of fields in the fileinfo structure is shown below.

Field Name Description

AudioFormat String containing the name of the format
used to store the audio data, if audio data
is present

AudioRate Integer indicating the sample rate in
Hertz of the audio stream, if audio data
is present

Filename String specifying the name of the file

FileModDate String containing the modification date of
the file

FileSize Integer indicating the size of the file in
bytes

FramesPerSecond Integer indicating the desired frames per
second

Height Integer indicating the height of the AVI
movie in pixels

ImageType String indicating the type of image. Either
'truecolor' for a truecolor (RGB) image,
or 'indexed' for an indexed image.

2-256

aviinfo

Field Name Description

NumAudioChannels Integer indicating the number of channels
in the audio stream, if audio data is
present

NumFrames Integer indicating the total number of
frames in the movie

NumColormapEntries Integer specifying the number of colormap
entries. For a truecolor image, this value
is 0 (zero).

Quality Number between 0 and 100 indicating
the video quality in the AVI file. Higher
quality numbers indicate higher video
quality; lower quality numbers indicate
lower video quality. This value is not
always set in AVI files and therefore can
be inaccurate.

VideoCompression String containing the compressor used to
compress the AVI file. If the compressor
is not Microsoft Video 1, Run Length
Encoding (RLE), Cinepak, or Intel Indeo,
aviinfo returns the four-character code
that identifies the compressor.

Width Integer indicating the width of the AVI
movie in pixels

See also avifile, aviread

2-257

aviread

Purpose Read Audio/Video Interleaved (AVI) file

Syntax mov = aviread(filename)
mov = aviread(filename, index)

Description mov = aviread(filename) reads the AVI movie filename into the
MATLAB movie structure mov. If filename does not include an
extension, then .avi is used. Use the movie function to view the movie
mov. On UNIX, filename must be an uncompressed AVI file.

mov has two fields, cdata and colormap. The content of these fields
varies depending on the type of image.

Image Type cdata Field colormap Field

Truecolor Height-by-width-by-3
array of uint8 values

Empty

Indexed Height-by-width
array of uint8 values

m-by-3 array of
double values

aviread supports 8-bit frames, for indexed and grayscale images, 16-bit
grayscale images, or 24-bit truecolor images. Note, however, that movie
only accepts 8-bit image frames; it does not accept 16-bit grayscale
image frames.

mov = aviread(filename, index) reads only the frames specified by
index. index can be a single index or an array of indices into the video
stream. In AVI files, the first frame has the index value 1, the second
frame has the index value 2, and so on.

See also avifile, aviinfo, movie

2-258

axes

Purpose Create axes graphics object

GUI
Alternatives

To create a figure select New > Figure from the MATLAB Desktop
or a figure’s File menu. To add an axes to a figure, click one of the
New Subplots icons in the Figure Palette, and slide right to select an
arrangement of new axes. For details, see “Plotting Tools — Interactive
Plotting” in the MATLAB Graphics documentation.

Syntax axes
axes('PropertyName',propertyvalue,...)
axes(h)
h = axes(...)

Description axes is the low-level function for creating axes graphics objects.

axes creates an axes graphics object in the current figure using default
property values.

axes('PropertyName',propertyvalue,...) creates an axes object
having the specified property values. MATLAB uses default values for
any properties that you do not explicitly define as arguments.

axes(h) makes existing axes h the current axes and brings the figure
containing it into focus. It also makes h the first axes listed in the
figure’s Children property and sets the figure’s CurrentAxes property
to h. The current axes is the target for functions that draw image, line,
patch, rectangle, surface, and text graphics objects.

If you want to make an axes the current axes without changing the
state of the parent figure, set the CurrentAxes property of the figure
containing the axes:

set(figure_handle,'CurrentAxes',axes_handle)

2-259

axes

This is useful if you want a figure to remain minimized or stacked below
other figures, but want to specify the current axes.

h = axes(...) returns the handle of the created axes object.

Remarks MATLAB automatically creates an axes, if one does not already exist,
when you issue a command that creates a graph.

The axes function accepts property name/property value pairs,
structure arrays, and cell arrays as input arguments (see the set
and get commands for examples of how to specify these data types).
These properties, which control various aspects of the axes object, are
described in the Axes Properties section.

Use the set function to modify the properties of an existing axes or the
get function to query the current values of axes properties. Use the gca
command to obtain the handle of the current axes.

The axis (not axes) function provides simplified access to commonly
used properties that control the scaling and appearance of axes.

While the basic purpose of an axes object is to provide a coordinate
system for plotted data, axes properties provide considerable control
over the way MATLAB displays data.

Stretch-to-Fill

By default, MATLAB stretches the axes to fill the axes position
rectangle (the rectangle defined by the last two elements in the
Position property). This results in graphs that use the available
space in the rectangle. However, some 3-D graphs (such as a sphere)
appear distorted because of this stretching, and are better viewed with
a specific three-dimensional aspect ratio.

Stretch-to-fill is active when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto (the default). However, stretch-to-fill is turned off when the
DataAspectRatio, PlotBoxAspectRatio, or CameraViewAngle is
user-specified, or when one or more of the corresponding modes is set to
manual (which happens automatically when you set the corresponding
property value).

2-260

axes

This picture shows the same sphere displayed both with and without
the stretch-to-fill. The dotted lines show the axes rectangle.

When stretch-to-fill is disabled, MATLAB sets the size of the axes to
be as large as possible within the constraints imposed by the Position
rectangle without introducing distortion. In the picture above, the
height of the rectangle constrains the axes size.

Examples Zooming

Zoom in using aspect ratio and limits:

sphere
set(gca,'DataAspectRatio',[1 1 1],...

'PlotBoxAspectRatio',[1 1 1],'ZLim',[-0.6 0.6])

Zoom in and out using the CameraViewAngle:

sphere
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')-5)
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')+5)

Note that both examples disable the MATLAB stretch-to-fill behavior.

2-261

axes

Positioning the Axes

The axes Position property enables you to define the location of the
axes within the figure window. For example,

h = axes('Position',position_rectangle)

creates an axes object at the specified position within the current figure
and returns a handle to it. Specify the location and size of the axes with
a rectangle defined by a four-element vector,

position_rectangle = [left, bottom, width, height];

The left and bottom elements of this vector define the distance from
the lower left corner of the figure to the lower left corner of the rectangle.
The width and height elements define the dimensions of the rectangle.
You specify these values in units determined by the Units property. By
default, MATLAB uses normalized units where (0,0) is the lower left
corner and (1.0,1.0) is the upper right corner of the figure window.

You can define multiple axes in a single figure window:

axes('position',[.1 .1 .8 .6])
mesh(peaks(20));
axes('position',[.1 .7 .8 .2])
pcolor([1:10;1:10]);

In this example, the first plot occupies the bottom two-thirds of the
figure, and the second occupies the top third.

2-262

axes

Object
Hierarchy

2-263

axes

Setting Default Properties

You can set default axes properties on the figure and root levels:

set(0,'DefaultAxesPropertyName',PropertyValue,...)
set(gcf,'DefaultAxesPropertyName',PropertyValue,...)

where PropertyName is the name of the axes property and
PropertyValue is the value you are specifying. Use set and get to
access axes properties.

See Also axis, cla, clf, figure, gca, grid, subplot, title, xlabel, ylabel,
zlabel, view

“Axes Operations” on page 1-95 for related functions

“Axes Properties” for more examples

See “Types of Graphics Objects” for information on core, group, plot, and
annotation objects.

2-264

Axes Properties

Purpose Axes properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

Axes
Property
Descriptions

This section lists property names along with the types of values each
accepts. Curly braces { } enclose default values.

ActivePositionProperty
{outerposition} | position

Use OuterPosition or Position property for resize.
ActivePositionProperty specifies which property MATLAB
uses to determine the size of the axes when the figure is resized
(interactively or during a printing or exporting operation).

See OuterPosition and Position for related properties.

See Automatic Axes Resize for a discussion of how to use axes
positioning properties.

ALim
[amin, amax]

Alpha axis limits. A two-element vector that determines how
MATLAB maps the AlphaData values of surface, patch, and
image objects to the figure’s alphamap. amin is the value of the
data mapped to the first alpha value in the alphamap, and amax
is the value of the data mapped to the last alpha value in the
alphamap. Data values in between are linearly interpolated

2-265

Axes Properties

across the alphamap, while data values outside are clamped to
either the first or last alphamap value, whichever is closest.

When ALimMode is auto (the default), MATLAB assigns amin the
minimum data value and amax the maximum data value in the
graphics object’s AlphaData. This maps AlphaData elements with
minimum data values to the first alphamap entry and those with
maximum data values to the last alphamap entry. Data values in
between are mapped linearly to the values

If the axes contains multiple graphics objects, MATLAB
sets ALim to span the range of all objects’ AlphaData (or
FaceVertexAlphaData for patch objects).

See the alpha function reference page for additional information.

ALimMode
{auto} | manual

Alpha axis limits mode. In auto mode, MATLAB sets the ALim
property to span the AlphaData limits of the graphics objects
displayed in the axes. If ALimMode is manual, MATLAB does not
change the value of ALim when the AlphaData limits of axes
children change. Setting the ALim property sets ALimMode to
manual.

AmbientLightColor
ColorSpec

The background light in a scene. Ambient light is a directionless
light that shines uniformly on all objects in the axes. However, if
there are no visible light objects in the axes, MATLAB does not
use AmbientLightColor. If there are light objects in the axes, the
AmbientLightColor is added to the other light sources.

AspectRatio
(Obsolete)

2-266

Axes Properties

This property produces a warning message when queried or
changed. It has been superseded by the DataAspectRatio[Mode]
and PlotBoxAspectRatio[Mode] properties.

BeingDeleted
on | {off}

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

See the close and delete function reference pages for related
information.

Box
on | {off}

Axes box mode. This property specifies whether to enclose the
axes extent in a box for 2-D views or a cube for 3-D views. The
default is to not display the box.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback executing,
callback invoked subsequently always attempt to interrupt it.
If the Interruptible property of the object whose callback is

2-267

Axes Properties

executing is set to on (the default), then interruption occurs at the
next point where the event queue is processed.

If the Interruptible property is off, the BusyAction property
(of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is within the axes,
but not over another graphics object parented to the axes. For
3-D views, the active area is defined by a rectangle that encloses
the axes.

See the figure’s SelectionType property to determine whether
modifier keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of axes associated with the button down event and an event
structure, which is empty for this property)

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

Some Plotting Functions Reset the ButtonDownFcn

Most MATLAB plotting functions clear the axes and reset a
number of axes properties, including the ButtonDownFcn before

2-268

Axes Properties

plotting data. If you want to create an interface that enables users
to plot data interactively, consider using a control device such
as a push button (uicontrol), which is not affected by plotting
functions. See “Example — Using Function Handles in GUIs”
for an example.

If you must use the axes ButtonDownFcn to plot data, then you
should use low-level functions such as line patch, and surface
and manage the process with the figure and axes NextPlot
properties.

See “High-Level Versus Low-Level” for information on how
plotting functions behave.

See “Preparing Figures and Axes for Graphics” for more
information.

Camera Properties

See View Control with the Camera Toolbar for information related to
the Camera properties

CameraPosition
[x, y, z] axes coordinates

The location of the camera. This property defines the position
from which the camera views the scene. Specify the point in axes
coordinates.

If you fix CameraViewAngle, you can zoom in and out on the scene
by changing the CameraPosition, moving the camera closer to the
CameraTarget to zoom in and farther away from the CameraTarget
to zoom out. As you change the CameraPosition, the amount of
perspective also changes, if Projection is perspective. You can
also zoom by changing the CameraViewAngle; however, this does
not change the amount of perspective in the scene.

2-269

Axes Properties

CameraPositionMode
{auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB
automatically calculates the CameraPosition such that the
camera lies a fixed distance from the CameraTarget along the
azimuth and elevation specified by view. Setting a value for
CameraPosition sets this property to manual.

CameraTarget
[x, y, z] axes coordinates

Camera aiming point. This property specifies the location in
the axes that the camera points to. The CameraTarget and the
CameraPosition define the vector (the view axis) along which
the camera looks.

CameraTargetMode
{auto} | manual

Auto or manual CameraTarget placement. When this property is
auto, MATLAB automatically positions the CameraTarget at the
centroid of the axes plot box. Specifying a value for CameraTarget
sets this property to manual.

CameraUpVector
[x, y, z] axes coordinates

Camera rotation. This property specifies the rotation of the
camera around the viewing axis defined by the CameraTarget
and the CameraPosition properties. Specify CameraUpVector
as a three-element array containing the x, y, and z components
of the vector. For example, [0 1 0] specifies the positive y-axis
as the up direction.

The default CameraUpVector is [0 0 1], which defines the
positive z-axis as the up direction.

2-270

Axes Properties

CameraUpVectorMode
auto} | manual

Default or user-specified up vector. When CameraUpVectorMode
is auto, MATLAB uses a value of [0 0 1] (positive z-direction
is up) for 3-D views and [0 1 0] (positive y-direction is up) for
2-D views. Setting a value for CameraUpVector sets this property
to manual.

CameraViewAngle
scalar greater than 0 and less than or equal to 180 (angle in
degrees)

The field of view. This property determines the camera field of
view. Changing this value affects the size of graphics objects
displayed in the axes, but does not affect the degree of perspective
distortion. The greater the angle, the larger the field of view, and
the smaller objects appear in the scene.

CameraViewAngleMode
{auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB
sets CameraViewAngle to the minimum angle that captures the
entire scene (up to 180°).

The following table summarizes MATLAB automatic camera
behavior.

2-271

Axes Properties

CameraViewAngle Camera Target Camera Position Behavior

auto auto auto CameraTarget is set
to plot box centroid,
CameraViewAngle
is set to capture
entire scene,
CameraPosition
is set along the view
axis.

auto auto manual CameraTarget is set
to plot box centroid,
CameraViewAngle is
set to capture entire
scene.

auto manual auto CameraViewAngle
is set to capture
entire scene,
CameraPosition
is set along the view
axis.

auto manual manual CameraViewAngle is
set to capture entire
scene.

manual auto auto CameraTarget is set
to plot box centroid,
CameraPosition is
set along the view
axis.

manual auto manual CameraTarget is set
to plot box centroid

2-272

Axes Properties

CameraViewAngle Camera Target Camera Position Behavior

manual manual auto CameraPosition is
set along the view
axis.

manual manual manual All camera
properties are
user-specified.

Children
vector of graphics object handles

. A vector containing the handles of all graphics objects rendered
within the axes (whether visible or not). The graphics objects that
can be children of axes are image, light, line, patch, rectangle,
surface, and text. You can change the order of the handles and
thereby change the stacking of the objects on the display.

The text objects used to label the x-, y-, and z-axes are also
children of axes, but their HandleVisibility properties are set to
callback. This means their handles do not show up in the axes
Children property unless you set the Root ShowHiddenHandles
property to on.

When an object’s HandleVisibility property is set to off, it is not
listed in its parent’s Children property. See HandleVisibility
for more information.

CLim
[cmin, cmax]

Color axis limits. A two-element vector that determines how
MATLAB maps the CData values of surface and patch objects
to the figure’s colormap. cmin is the value of the data mapped
to the first color in the colormap, and cmax is the value of the
data mapped to the last color in the colormap. Data values in
between are linearly interpolated across the colormap, while data

2-273

Axes Properties

values outside are clamped to either the first or last colormap
color, whichever is closest.

When CLimMode is auto (the default), MATLAB assigns cmin the
minimum data value and cmax the maximum data value in the
graphics object’s CData. This maps CData elements with minimum
data value to the first colormap entry and with maximum data
value to the last colormap entry.

If the axes contains multiple graphics objects, MATLAB sets CLim
to span the range of all objects’ CData.

See the caxis function reference page for related information.

CLimMode
{auto} | manual

Color axis limits mode. In auto mode, MATLAB sets the CLim
property to span the CData limits of the graphics objects displayed
in the axes. If CLimMode is manual, MATLAB does not change
the value of CLim when the CData limits of axes children change.
Setting the CLim property sets this property to manual.

Clipping
{on} | off

This property has no effect on axes.

Color
{none} | ColorSpec

Color of the axes back planes. Setting this property to none means
the axes is transparent and the figure color shows through. A
ColorSpec is a three-element RGB vector or one of the MATLAB
predefined names. Note that while the default value is none, the
matlabrc.m file may set the axes color to a specific color.

ColorOrder
m-by-3 matrix of RGB values

2-274

Axes Properties

Colors to use for multiline plots. ColorOrder is an m-by-3 matrix
of RGB values that define the colors used by the plot and plot3
functions to color each line plotted. If you do not specify a line
color with plot and plot3, these functions cycle through the
ColorOrder to obtain the color for each line plotted. To obtain
the current ColorOrder, which may be set during startup, get
the property value:

get(gca,'ColorOrder')

Note that if the axes NextPlot property is set to replace (the
default), high-level functions like plot reset the ColorOrder
property before determining the colors to use. If you want
MATLAB to use a ColorOrder that is different from the default,
set NextPlot to replacechildren. You can also specify your own
default ColorOrder.

CreateFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. A callback
function that executes when MATLAB creates an axes object.
You must define this property as a default value for axes. For
example, the statement

set(0,'DefaultAxesCreateFcn',@ax_create)

defines a default value on the Root level that sets axes properties
whenever you (or MATLAB) create an axes.

function ax_create(src,evnt)
set(src,'Color','b',...
'XLim',[1 10],...
'YLim',[0 100])

end

2-275

Axes Properties

MATLAB executes this function after setting all properties for the
axes. Setting the CreateFcn property on an existing axes object
has no effect.

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the Root CallbackObject property,
which can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

CurrentPoint
2-by-3 matrix

Location of last button click, in axes data units. A 2-by-3 matrix
containing the coordinates of two points defined by the location of
the pointer when the mouse was last clicked. MATLAB returns
the coordinates with respect to the requested axes.

Clicking Within the Axes — Orthogonal Projection

The two points lie on the line that is perpendicular to the plane of
the screen and passes through the pointer. This is true for both
2-D and 3-D views.

The 3-D coordinates are the points, in the axes coordinate system,
where this line intersects the front and back surfaces of the axes
volume (which is defined by the axes x, y, and z limits).

The returned matrix is of the form:

2-276

Axes Properties

where front defines the point nearest to the camera position.
Therefore, if cp is the matrix returned by the CurrentPoint
property, then the first row,

cp(1,:)

specifies the point nearest the viewer and the second row,

cp(2,:)

specifies the point furthest from the viewer.

Clicking Outside the Axes — Orthogonal Projection

When you click outside the axes volume, but within the figure,
the values returned are:

• Back point — a point in the plane of the camera target (which
is perpendicular to the viewing axis).

• Front point — a point in the camera position plane (which is
perpendicular to the viewing axis).

These points lie on a line that passes through the pointer and is
perpendicular to the camera target and camera position planes.

Clicking Within the Axes — Perspective Projection

The values of the current point when using perspective project
can be different from the same point in orthographic projection
because the shape of the axes volume can be different.

Clicking Outside the Axes — Perspective Projection

Clicking outside of the axes volume causes the front point to be
returned as the current camera position at all times. Only the
back point updates with the coordinates of a point that lies on a
line extending from the camera position through the pointer and
intersecting the camera target at the point.

2-277

Axes Properties

Related Information

See Defining Scenes with Camera Graphics for information on
the camera properties.

See View Projection Types for information on orthogonal and
perspective projections.

DataAspectRatio
[dx dy dz]

Relative scaling of data units. A three-element vector controlling
the relative scaling of data units in the x, y, and z directions. For
example, setting this property t o [1 2 1] causes the length of one
unit of data in the x direction to be the same length as two units
of data in the y direction and one unit of data in the z direction.

Note that the DataAspectRatio property interacts with the
PlotBoxAspectRatio, XLimMode, YLimMode, and ZLimMode
properties to control how MATLAB scales the x-, y-, and z-axis.
Setting the DataAspectRatio will disable the stretch-to-fill
behavior if DataAspectRatioMode, PlotBoxAspectRatioMode,
and CameraViewAngleMode are all auto. The following
table describes the interaction between properties when
stretch-to-fill behavior is disabled.

X-, Y-, Z-Limits DataAspect Ratio
PlotBox
AspectRatio Behavior

auto auto auto Limits chosen to
span data range in
all dimensions.

2-278

Axes Properties

X-, Y-, Z-Limits DataAspect Ratio
PlotBox
AspectRatio Behavior

auto auto manual Limits chosen to
span data range
in all dimensions.
DataAspectRatio is
modified to achieve
the requested
PlotBoxAspectRatio
within the limits
selected by
MATLAB.

auto manual auto Limits chosen to
span data range
in all dimensions.
PlotBoxAspectRatio
is modified
to achieve
the requested
DataAspectRatio
within the limits
selected by
MATLAB.

auto manual manual Limits chosen to
completely fit and
center the plot
within the requested
PlotBoxAspectRatio
given the requested
DataAspectRatio
(this may produce
empty space
around 2 of the 3
dimensions).

2-279

Axes Properties

X-, Y-, Z-Limits DataAspect Ratio
PlotBox
AspectRatio Behavior

manual auto auto Limits are
honored. The
DataAspectRatio
and
PlotBoxAspectRatio
are modified as
necessary.

manual auto manual Limits and
PlotBoxAspectRatio
are honored. The
DataAspectRatio
is modified as
necessary.

manual manual auto Limits and
DataAspectRatio
are honored. The
PlotBoxAspectRatio
is modified as
necessary.

1 manual

2 auto

manual manual The 2 automatic
limits are selected
to honor the
specified aspect
ratios and limit. See
"Examples."

2 or 3 manual manual manual Limits and
DataAspectRatio
are honored; the
PlotBoxAspectRatio
is ignored.

See “Understanding Axes Aspect Ratio” for more information.

2-280

Axes Properties

DataAspectRatioMode
{auto} | manual

User or MATLAB controlled data scaling. This property controls
whether the values of the DataAspectRatio property are user
defined or selected automatically by MATLAB. Setting values
for the DataAspectRatio property automatically sets this
property to manual. Changing DataAspectRatioMode to manual
disables the stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto.

DeleteFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Delete axes callback function. A callback function that executes
when the axes object is deleted (e.g., when you issue a delete or
clf command). MATLAB executes the routine before destroying
the object’s properties so the callback can query these values.

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the Root CallbackObject property,
which can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DrawMode
{normal} | fast

Rendering mode. This property controls the way MATLAB
renders graphics objects displayed in the axes when the figure
Renderer property is painters.

2-281

Axes Properties

• normal mode draws objects in back to front ordering based on
the current view in order to handle hidden surface elimination
and object intersections.

• fast mode draws objects in the order in which you specify the
drawing commands, without considering the relationships of
the objects in three dimensions. This results in faster rendering
because it requires no sorting of objects according to location
in the view, but can produce undesirable results because it
bypasses the hidden surface elimination and object intersection
handling provided by normal DrawMode.

When the figure Renderer is zbuffer, DrawMode is ignored, and
hidden surface elimination and object intersection handling are
always provided.

FontAngle
{normal} | italic | oblique

Select italic or normal font. This property selects the character
slant for axes text. normal specifies a nonitalic font. italic and
oblique specify italic font.

FontName
A name such as Courier or the string FixedWidth

Font family name. The font family name specifying the font to use
for axes labels. To display and print properly, FontName must be
a font that your system supports. Note that the x-, y-, and z-axis
labels are not displayed in a new font until you manually reset
them (by setting the XLabel, YLabel, and ZLabel properties or by
using the xlabel, ylabel, or zlabel command). Tick mark labels
change immediately.

Specifying a Fixed-Width Font

If you want an axes to use a fixed-width font that looks good in
any locale, you should set FontName to the string FixedWidth:

2-282

Axes Properties

set(axes_handle,'FontName','FixedWidth')

This eliminates the need to hardcode the name of a fixed-width
font, which might not display text properly on systems that do not
use ASCII character encoding (such as in Japan, where multibyte
character sets are used). A properly written MATLAB application
that needs to use a fixed-width font should set FontName to
FixedWidth (note that this string is case sensitive) and rely
on FixedWidthFontName to be set correctly in the end user’s
environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes
an immediate update of the display to use the new font.

FontSize
Font size specified in FontUnits

Font size. An integer specifying the font size to use for axes labels
and titles, in units determined by the FontUnits property. The
default point size is 12. The x-, y-, and z-axis text labels are not
displayed in a new font size until you manually reset them (by
setting the XLabel, YLabel, or ZLabel properties or by using the
xlabel, ylabel, or zlabel command). Tick mark labels change
immediately.

FontUnits
{points} | normalized | inches | centimeters | pixels

Units used to interpret the FontSize property. When set to
normalized, MATLAB interprets the value of FontSize as a
fraction of the height of the axes. For example, a normalized
FontSize of 0.1 sets the text characters to a font whose height
is one tenth of the axes’ height. The default units (points), are
equal to 1/72 of an inch.

2-283

Axes Properties

Note that if you are setting both the FontSize and the FontUnits
in one function call, you must set the FontUnits property first so
that MATLAB can correctly interpret the specified FontSize.

FontWeight
{normal} | bold | light | demi

Select bold or normal font. The character weight for axes text.
The x-, y-, and z-axis text labels are not displayed in bold until you
manually reset them (by setting the XLabel, YLabel, and ZLabel
properties or by using the xlabel, ylabel, or zlabel commands).
Tick mark labels change immediately.

GridLineStyle
- | - -| {:} | -. | none

Line style used to draw grid lines. The line style is a string
consisting of a character, in quotes, specifying solid lines (-),
dashed lines (--), dotted lines(:), or dash-dot lines (-.). The default
grid line style is dotted. To turn on grid lines, use the grid
command.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from

2-284

Axes Properties

command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string) and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the Root’s CurrentFigure property,
objects do not appear in the Root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the axes can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click

2-285

Axes Properties

on the axes. If HitTest is off, clicking the axes selects the object
below it (which is usually the figure containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an axes callback routine can be interrupted by
subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible
property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe,
or pause command in the routine. See the BusyAction property
for related information.

Setting Interruptible to on allows any graphics object’s callback
routine to interrupt callback routines originating from an axes
property. Note that MATLAB does not save the state of variables
or the display (e.g., the handle returned by the gca or gcf
command) when an interruption occurs.

Layer
{bottom} | top

Draw axis lines below or above graphics objects. This property
determines if axis lines and tick marks are drawn on top or below
axes children objects for any 2-D view (i.e., when you are looking
along the x-, y-, or z-axis). This is useful for placing grid lines
and tick marks on top of images.

LineStyleOrder
LineSpec (default: a solid line ’-’)

Order of line styles and markers used in a plot. This property
specifies which line styles and markers to use and in what order
when creating multiple-line plots. For example,

set(gca,'LineStyleOrder', '-*|:|o')

2-286

Axes Properties

sets LineStyleOrder to solid line with asterisk marker, dotted
line, and hollow circle marker. The default is (-), which specifies a
solid line for all data plotted. Alternatively, you can create a cell
array of character strings to define the line styles:

set(gca,'LineStyleOrder',{'-*',':','o'})

MATLAB supports four line styles, which you can specify any
number of times in any order. MATLAB cycles through the line
styles only after using all colors defined by the ColorOrder
property. For example, the first eight lines plotted use the
different colors defined by ColorOrder with the first line style.
MATLAB then cycles through the colors again, using the second
line style specified, and so on.

You can also specify line style and color directly with the plot
and plot3 functions or by altering the properties of theline or
lineseries objects after creating the graph.

High-Level Functions and LineStyleOrder

Note that, if the axes NextPlot property is set to replace (the
default), high-level functions like plot reset the LineStyleOrder
property before determining the line style to use. If you want
MATLAB to use a LineStyleOrder that is different from the
default, set NextPlot to replacechildren.

Specifying a Default LineStyleOrder

You can also specify your own default LineStyleOrder. For
example, this statement

set(0,'DefaultAxesLineStyleOrder',{'-*',':','o'})

creates a default value for the axes LineStyleOrder that is not
reset by high-level plotting functions.

2-287

Axes Properties

LineWidth
line width in points

Width of axis lines. This property specifies the width, in points, of
the x-, y-, and z-axis lines. The default line width is 0.5 points (1
point = 1/72 inch).

MinorGridLineStyle
- | - -| {:} | -. | none

Line style used to draw minor grid lines. The line style is a string
consisting of one or more characters, in quotes, specifying solid
lines (-), dashed lines (--), dotted lines (:), or dash-dot lines (-.).
The default minor grid line style is dotted. To turn on minor grid
lines, use the grid minor command.

NextPlot
add | {replace} | replacechildren

Where to draw the next plot. This property determines how
high-level plotting functions draw into an existing axes.

• add — Use the existing axes to draw graphics objects.

• replace — Reset all axes properties except Position to their
defaults and delete all axes children before displaying graphics
(equivalent to cla reset).

• replacechildren — Remove all child objects, but do not reset
axes properties (equivalent to cla).

The newplot function simplifies the use of the NextPlot property
and is used by M-file functions that draw graphs using only
low-level object creation routines. See the M-file pcolor.m for an
example. Note that figure graphics objects also have a NextPlot
property.

OuterPosition
four-element vector

2-288

Axes Properties

Position of axes including labels, title, and a margin. A
four-element vector specifying a rectangle that locates the outer
bounds of the axes, including axis labels, the title, and a margin.
The vector is defined as follows:

[left bottom width height]

where left and bottom define the distance from the lower-left
corner of the figure window to the lower-left corner of the
rectangle. width and height are the dimensions of the rectangle

The following picture shows the region defined by the
OuterPosition enclosed in a yellow rectangle.

When ActivePositionProperty is set to OuterPosition (the
default), none of the text is clipped when you resize the figure.

2-289

Axes Properties

The default value of [0 0 1 1] (normalized units) includes the
interior of the figure.

All measurements are in units specified by the Units property.

See the TightInset property for related information.

See “Automatic Axes Resize” for a discussion of how to use axes
positioning properties.

Parent
figure or uipanel handle

Axes parent. The handle of the axes’ parent object. The parent of
an axes object is the figure in which it is displayed or the uipanel
object that contains it. The utility function gcf returns the handle
of the current axes Parent. You can reparent axes to other figure
or uipanel objects.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

PlotBoxAspectRatio
[px py pz]

Relative scaling of axes plot box. A three-element vector
controlling the relative scaling of the plot box in the x, y, and z
directions. The plot box is a box enclosing the axes data region as
defined by the x-, y-, and z-axis limits.

Note that the PlotBoxAspectRatio property interacts with
the DataAspectRatio, XLimMode, YLimMode, and ZLimMode
properties to control the way graphics objects are displayed in the
axes. Setting the PlotBoxAspectRatio disables stretch-to-fill
behavior, if DataAspectRatioMode, PlotBoxAspectRatioMode,
and CameraViewAngleMode are all auto.

2-290

Axes Properties

PlotBoxAspectRatioMode
{auto} | manual

User or MATLAB controlled axis scaling. This property controls
whether the values of the PlotBoxAspectRatio property are user
defined or selected automatically by MATLAB. Setting values
for the PlotBoxAspectRatio property automatically sets this
property to manual. Changing the PlotBoxAspectRatioMode to
manual disables stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto.

Position
four-element vector

Position of axes. A four-element vector specifying a rectangle that
locates the axes within its parent container (figure or uipanel).
The vector is of the form

[left bottom width height]

where left and bottom define the distance from the lower-left
corner of the container to the lower-left corner of the rectangle.
width and height are the dimensions of the rectangle. All
measurements are in units specified by the Units property.

When axes stretch-to-fill behavior is enabled (when
DataAspectRatioMode, PlotBoxAspectRatioMode, and
CameraViewAngleMode are all auto), the axes are stretched to fill
the Position rectangle. When stretch-to-fill is disabled, the axes
are made as large as possible, while obeying all other properties,
without extending outside the Position rectangle.

See the OuterPosition poperty for related information.

See “Automatic Axes Resize” for a discussion of how to use axes
positioning properties.

2-291

Axes Properties

Projection
{orthographic} | perspective

Type of projection. This property selects between two projection
types:

• orthographic — This projection maintains the correct relative
dimensions of graphics objects with regard to the distance a
given point is from the viewer. Parallel lines in the data are
drawn parallel on the screen.

• perspective — This projection incorporates foreshortening,
which allows you to perceive depth in 2-D representations of 3-D
objects. Perspective projection does not preserve the relative
dimensions of objects; a distant line segment is displayed
smaller than a nearer line segment of the same length. Parallel
lines in the data may not appear parallel on screen.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection “handles” at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that the axes has been selected.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag
string

2-292

Axes Properties

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines.

For example, suppose you want to direct all graphics output from
an M-file to a particular axes, regardless of user actions that may
have changed the current axes. To do this, identify the axes with
a Tag:

axes('Tag','Special Axes')

Then make that axes the current axes before drawing by searching
for the Tag with findobj:

axes(findobj('Tag','Special Axes'))

TickDir
in | out

Direction of tick marks. For 2-D views, the default is to direct tick
marks inward from the axis lines; 3-D views direct tick marks
outward from the axis line.

TickDirMode
{auto} | manual

Automatic tick direction control. In auto mode, MATLAB directs
tick marks inward for 2-D views and outward for 3-D views. When
you specify a setting for TickDir, MATLAB sets TickDirMode to
manual. In manual mode, MATLAB does not change the specified
tick direction.

TickLength
[2DLength 3DLength]

2-293

Axes Properties

Length of tick marks. A two-element vector specifying the length
of axes tick marks. The first element is the length of tick marks
used for 2-D views and the second element is the length of tick
marks used for 3-D views. Specify tick mark lengths in units
normalized relative to the longest of the visible X-, Y-, or Z-axis
annotation lines.

TightInset
[left bottom right top] Read only

Margins added to Position to include text labels. The values of this
property are the distances between the bounds of the Position
property and the extent of the axes text labels and title. When
added to the Position width and height values, the TightInset
defines the tightest bounding box that encloses the axes and it’s
labels and title.

See “Automatic Axes Resize” for more information.

Title
handle of text object

Axes title. The handle of the text object that is used for the axes
title. You can use this handle to change the properties of the title
text or you can set Title to the handle of an existing text object.
For example, the following statement changes the color of the
current title to red:

set(get(gca,'Title'),'Color','r')

To create a new title, set this property to the handle of the text
object you want to use:

set(gca,'Title',text('String','New Title','Color','r'))

However, it is generally simpler to use the title command to
create or replace an axes title:

title('New Title','Color','r') % Make text color red

2-294

Axes Properties

title({'This title','has 2 lines'}) % Two line title

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of graphics object. For axes objects, Type is
always set to 'axes'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the axes. Assign this property the
handle of a uicontextmenu object created in the axes’ parent
figure. Use the uicontextmenu function to create the context
menu. MATLAB displays the context menu whenever you
right-click over the axes.

Units
inches | centimeters | {normalized} | points | pixels
| characters

Axes position units. The units used to interpret the Position
property. All units are measured from the lower left corner of
the figure window.

Note The Units property controls the positioning of the axes
within the figure. This property does not affect the data units
used for graphing. See the axes XLim, YLim, and ZLim properties
to set the limits of each axis data units.

• normalized units map the lower left corner of the figure
window to (0,0) and the upper right corner to (1.0, 1.0).

• inches, centimeters, and points are absolute units (one point
equals 1/72 of an inch).

2-295

Axes Properties

• Character units are defined by characters from the default
system font; the width of one character is the width of the letter
x, and the height of one character is the distance between the
baselines of two lines of text.

When specifying the units as property/value pairs during object
creation, you must set the Units property before specifying the
properties that you want to use these units.

UserData
matrix

User-specified data. This property can be any data you want to
associate with the axes object. The axes does not use this property,
but you can access it using the set and get functions.

View
Obsolete

The functionality provided by the View property is now controlled
by the axes camera properties — CameraPosition, CameraTarget,
CameraUpVector, and CameraViewAngle. See the view command.

Visible
{on} | off

Visibility of axes. By default, axes are visible. Setting this
property to off prevents axis lines, tick marks, and labels from
being displayed. The Visible property does not affect children
of axes.

XAxisLocation
top | {bottom}

Location of x-axis tick marks and labels. This property controls
where MATLAB displays the x-axis tick marks and labels. Setting
this property to top moves the x-axis to the top of the plot from
its default position at the bottom. This property applies to 2–D
views only.

2-296

Axes Properties

YAxisLocation
right | {left}

Location of y-axis tick marks and labels. This property controls
where MATLAB displays the y-axis tick marks and labels. Setting
this property to right moves the y-axis to the right side of the plot
from its default position on the left side. This property applies to
2–D views only. See the plotyy function for a simple way to use
two y-axes.

Properties That Control the X-, Y-, or Z-Axis

XColor
YColor
ZColor

ColorSpec

Color of axis lines. A three-element vector specifying an RGB
triple, or a predefined MATLAB color string. This property
determines the color of the axis lines, tick marks, tick mark
labels, and the axis grid lines of the respective x-, y-, and z-axis.
The default color axis color is black. SeeColorSpec for details on
specifying colors.

XDir
YDir
ZDir

{normal} | reverse

Direction of increasing values. A mode controlling the direction of
increasing axis values. Axes form a right-hand coordinate system.
By default,

• x-axis values increase from left to right. To reverse the direction
of increasing x values, set this property to reverse.

set(gca,'XDir','reverse')

2-297

Axes Properties

• y-axis values increase from bottom to top (2-D view) or front to
back (3-D view). To reverse the direction of increasing y values,
set this property to reverse.

set(gca,'YDir','reverse')

• z-axis values increase pointing out of the screen (2-D view)
or from bottom to top (3-D view). To reverse the direction of
increasing z values, set this property to reverse.

set(gca,'ZDir','reverse')

XGrid
YGrid
ZGrid

on | {off}

Axis gridline mode. When you set any of these properties to
on, MATLAB draws grid lines perpendicular to the respective
axis (i.e., along lines of constant x, y, or z values). Use the grid
command to set all three properties on or off at once.

set(gca,'XGrid','on')

XLabel
YLabel
ZLabel

handle of text object

Axis labels. The handle of the text object used to label the x-, y-,
or z-axis, respectively. To assign values to any of these properties,
you must obtain the handle to the text string you want to use as a
label. This statement defines a text object and assigns its handle
to the XLabel property:

set(get(gca,'XLabel'),'String','axis label')

2-298

Axes Properties

MATLAB places the string 'axis label' appropriately for an
x-axis label. Any text object whose handle you specify as an
XLabel, YLabel, or ZLabel property is moved to the appropriate
location for the respective label.

Alternatively, you can use the xlabel, ylabel, and zlabel
functions, which generally provide a simpler means to label axis
lines.

Note that using a bitmapped font (e.g., Courier is usually a
bitmapped font) might cause the labels to be rotated improperly.
As a workaround, use a TrueType font (e.g., Courier New) for axis
labels. See your system documentation to determine the types of
fonts installed on your system.

XLim
YLim
ZLim

[minimum maximum]

Axis limits. A two-element vector specifying the minimum
and maximum values of the respective axis. These values are
determined by the data you are plotting.

Changing these properties affects the scale of the x-, y-, or
z-dimension as well as the placement of labels and tick marks on
the axis. The default values for these properties are [0 1].

See the axis, datetick, xlim, ylim, and zlim commands to set
these properties.

XLimMode
YLimMode
ZLimMode

{auto} | manual

MATLAB or user-controlled limits. The axis limits mode
determines whether MATLAB calculates axis limits based on the

2-299

Axes Properties

data plotted (i.e., the XData, YData, or ZData of the axes children)
or uses the values explicitly set with the XLim, YLim, or ZLim
property, in which case, the respective limits mode is set to manual.

XMinorGrid
YMinorGrid
ZMinorGrid

on | {off}

Enable or disable minor gridlines. When set to on, MATLAB
draws gridlines aligned with the minor tick marks of the
respective axis. Note that you do not have to enable minor ticks
to display minor grids.

XMinorTick
YMinorTick
ZMinorTick

on | {off}

Enable or disable minor tick marks. When set to on, MATLAB
draws tick marks between the major tick marks of the respective
axis. MATLAB automatically determines the number of minor
ticks based on the space between the major ticks.

XScale
YScale
ZScale

{linear} | log

Axis scaling. Linear or logarithmic scaling for the respective axis.
See also loglog, semilogx, and semilogy.

XTick
YTick
ZTick

vector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine
the location of tick marks along the respective axis. If you do

2-300

Axes Properties

not want tick marks displayed, set the respective property to
the empty vector, []. These vectors must contain monotonically
increasing values.

XTickLabel
YTickLabel
ZTickLabel

string

Tick labels. A matrix of strings to use as labels for tick marks
along the respective axis. These labels replace the numeric labels
generated by MATLAB. If you do not specify enough text labels
for all the tick marks, MATLAB uses all of the labels specified,
then reuses the specified labels.

For example, the statement

set(gca,'XTickLabel',{'One';'Two';'Three';'Four'})

labels the first four tick marks on the x-axis and then reuses the
labels until all ticks are labeled.

Labels can be specified as cell arrays of strings, padded string
matrices, string vectors separated by vertical slash characters, or
as numeric vectors (where each number is implicitly converted
to the equivalent string using num2str). All of the following are
equivalent:

set(gca,'XTickLabel',{'1';'10';'100'})
set(gca,'XTickLabel','1|10|100')
set(gca,'XTickLabel',[1;10;100])
set(gca,'XTickLabel',['1 ';'10 ';'100'])

Note that tick labels do not interpret TeX character sequences
(however, the Title, XLabel, YLabel, and ZLabel properties do).

2-301

Axes Properties

XTickMode
YTickMode
ZTickMode

{auto} | manual

MATLAB or user-controlled tick spacing. The axis tick modes
determine whether MATLAB calculates the tick mark spacing
based on the range of data for the respective axis (auto mode) or
uses the values explicitly set for any of the XTick, YTick, and
ZTick properties (manual mode). Setting values for the XTick,
YTick, or ZTick properties sets the respective axis tick mode to
manual.

XTickLabelMode
YTickLabelMode
ZTickLabelMode

{auto} | manual

MATLAB or user-determined tick labels. The axis tick mark
labeling mode determines whether MATLAB uses numeric tick
mark labels that span the range of the plotted data (auto mode)
or uses the tick mark labels specified with the XTickLabel,
YTickLabel, or ZTickLabel property (manual mode). Setting
values for the XTickLabel, YTickLabel, or ZTickLabel property
sets the respective axis tick label mode to manual.

2-302

axis

Purpose Axis scaling and appearance

Syntax axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax cmin cmax])
v = axis
axis auto
axis manual
axis tight
axis fill
axis ij
axis xy
axis equal
axis image
axis square
axis vis3d
axis normal
axis off
axis on
axis(axes_handles,...)
[mode,visibility,direction] = axis('state')

Description axis manipulates commonly used axes properties. (See Algorithm
section.)

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis
of the current axes.

axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-,
and z-axis limits and the color scaling limits (see caxis) of the current
axes.

v = axis returns a row vector containing scaling factors for the x-, y-,
and z-axis. v has four or six components depending on whether the
current axes is 2-D or 3-D, respectively. The returned values are the
current axes XLim, Ylim, and ZLim properties.

axis auto sets MATLAB to its default behavior of computing the
current axes limits automatically, based on the minimum and maximum
values of x, y, and z data. You can restrict this automatic behavior to

2-303

axis

a specific axis. For example, axis 'auto x' computes only the x-axis
limits automatically; axis 'auto yz' computes the y- and z-axis limits
automatically.

axis manual and axis(axis) freezes the scaling at the current limits, so
that if hold is on, subsequent plots use the same limits. This sets the
XLimMode, YLimMode, and ZLimMode properties to manual.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits and PlotBoxAspectRatio so that
the axes fill the position rectangle. This option has an effect only if
PlotBoxAspectRatioMode or DataAspectRatioMode is manual.

axis ij places the coordinate system origin in the upper left corner.
The i-axis is vertical, with values increasing from top to bottom. The
j-axis is horizontal with values increasing from left to right.

axis xy draws the graph in the default Cartesian axes format with
the coordinate system origin in the lower left corner. The x-axis is
horizontal with values increasing from left to right. The y-axis is
vertical with values increasing from bottom to top.

axis equal sets the aspect ratio so that the data units are the same
in every direction. The aspect ratio of the x-, y-, and z-axis is adjusted
automatically according to the range of data units in the x, y, and z
directions.

axis image is the same as axis equal except that the plot box fits
tightly around the data.

axis square makes the current axes region square (or cubed when
three-dimensional). MATLAB adjusts the x-axis, y-axis, and z-axis so
that they have equal lengths and adjusts the increments between data
units accordingly.

axis vis3d freezes aspect ratio properties to enable rotation of 3-D
objects and overrides stretch-to-fill.

axis normal automatically adjusts the aspect ratio of the axes and the
relative scaling of the data units so that the plot fits the figure’s shape
as well as possible.

2-304

axis

axis off turns off all axis lines, tick marks, and labels.

axis on turns on all axis lines, tick marks, and labels.

axis(axes_handles,...) applies the axis command to the specified
axes. For example, the following statements

h1 = subplot(221);
h2 = subplot(222);
axis([h1 h2],'square')

set both axes to square.

[mode,visibility,direction] = axis('state') returns three
strings indicating the current setting of axes properties:

Output
Argument Strings Returned

mode 'auto' | 'manual'

visibility 'on' | 'off'

direction 'xy' | 'ij'

mode is auto if XLimMode, YLimMode, and ZLimMode are all set to auto. If
XLimMode, YLimMode, or ZLimMode is manual, mode is manual.

Keywords to axis can be combined, separated by a space (e.g., axis
tight equal). These are evaluated from left to right, so subsequent
keywords can overwrite properties set by prior ones.

Examples The statements

x = 0:.025:pi/2;
plot(x,tan(x),'-ro')

use the automatic scaling of the y-axis based on ymax = tan(1.57),
which is well over 1000:

2-305

axis

The right figure shows a more satisfactory plot after typing

axis([0 pi/2 0 5])

2-306

axis

Algorithm When you specify minimum and maximum values for the x-, y-, and
z-axes, axis sets the XLim, Ylim, and ZLim properties for the current
axes to the respective minimum and maximum values in the argument
list. Additionally, the XLimMode, YLimMode, and ZLimMode properties for
the current axes are set to manual.

axis auto sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'auto'.

axis manual sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'manual'.

The following table shows the values of the axes properties set by axis
equal, axis normal, axis square, and axis image.

2-307

axis

Axes Property or
Behavior axis equal

axis
normal axis square axis image

DataAspectRatio property [1 1 1] not set not set [1 1 1]

DataAspectRatioMode
property

manual auto auto manual

PlotBoxAspectRatio
property

[3 4 4] not set [1 1 1] auto

PlotBoxAspectRatioMode
property

manual auto manual auto

Stretch-to-fill behavior; disabled active disabled disabled

See Also axes, grid, subplot, xlim, ylim, zlim

Properties of axes graphics objects

“Axes Operations” on page 1-95 for related functions

For aspect ratio behavior, see in the axes properties reference page.

2-308

balance

Purpose Diagonal scaling to improve eigenvalue accuracy

Syntax [T,B] = balance(A)
[S,P,B] = balance(A)
B = balance(A)
B = balance(A,'noperm')

Description [T,B] = balance(A) returns a similarity transformation T such that
B = T\A*T, and B has, as nearly as possible, approximately equal row
and column norms. T is a permutation of a diagonal matrix whose
elements are integer powers of two to prevent the introduction of
roundoff error. If A is symmetric, then B == A and T is the identity
matrix.

[S,P,B] = balance(A) returns the scaling vector S and the
permutation vector P separately. The transformation T and balanced
matrix B are obtained from A, S, and P by T(:,P) = diag(S) and
B(P,P) = diag(1./S)*A*diag(S).

B = balance(A) returns just the balanced matrix B.

B = balance(A,'noperm') scales A without permuting its rows and
columns.

Remarks Nonsymmetric matrices can have poorly conditioned eigenvalues.
Small perturbations in the matrix, such as roundoff errors, can lead to
large perturbations in the eigenvalues. The condition number of the
eigenvector matrix,

cond(V) = norm(V)*norm(inv(V))

where

[V,T] = eig(A)

relates the size of the matrix perturbation to the size of the eigenvalue
perturbation. Note that the condition number of A itself is irrelevant
to the eigenvalue problem.

2-309

balance

Balancing is an attempt to concentrate any ill conditioning of the
eigenvector matrix into a diagonal scaling. Balancing usually cannot
turn a nonsymmetric matrix into a symmetric matrix; it only attempts
to make the norm of each row equal to the norm of the corresponding
column.

Note The MATLAB eigenvalue function, eig(A), automatically
balances A before computing its eigenvalues. Turn off the balancing
with eig(A,'nobalance').

Examples This example shows the basic idea. The matrix A has large elements
in the upper right and small elements in the lower left. It is far from
being symmetric.

A = [1 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 *
0.0001 0.0100 1.0000
0.0000 0.0001 0.0100
0.0000 0.0000 0.0001

Balancing produces a diagonal matrix T with elements that are powers
of two and a balanced matrix B that is closer to symmetric than A.

[T,B] = balance(A)
T =

1.0e+03 *
2.0480 0 0

0 0.0320 0
0 0 0.0003

B =
1.0000 1.5625 1.2207
0.6400 1.0000 0.7813
0.8192 1.2800 1.0000

2-310

balance

To see the effect on eigenvectors, first compute the eigenvectors of A,
shown here as the columns of V.

[V,E] = eig(A); V
V =

-1.0000 0.9999 0.9937
0.0050 0.0100 -0.1120
0.0000 0.0001 0.0010

Note that all three vectors have the first component the largest. This
indicates V is badly conditioned; in fact cond(V) is 8.7766e+003. Next,
look at the eigenvectors of B.

[V,E] = eig(B); V
V =

-0.8873 0.6933 0.0898
0.2839 0.4437 -0.6482
0.3634 0.5679 -0.7561

Now the eigenvectors are well behaved and cond(V) is 1.4421. The ill
conditioning is concentrated in the scaling matrix; cond(T) is 8192.

This example is small and not really badly scaled, so the computed
eigenvalues of A and B agree within roundoff error; balancing has little
effect on the computed results.

Algorithm Inputs of Type Double

For inputs of type double, balance uses the linear algebra package
(LAPACK) routines DGEBAL (real) and ZGEBAL (complex). If you request
the output T, balance also uses the LAPACK routines DGEBAK (real)
and ZGEBAK (complex).

Inputs of Type Single

For inputs of type single, balance uses the LAPACK routines SGEBAL
(real) and CGEBAL (complex). If you request the output T, balance also
uses the LAPACK routines SGEBAK (real) and CGEBAK (complex).

2-311

balance

Limitations Balancing can destroy the properties of certain matrices; use it with
some care. If a matrix contains small elements that are due to roundoff
error, balancing might scale them up to make them as significant as the
other elements of the original matrix.

See Also eig

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-312

http://www.netlib.org/lapack/lug/lapack_lug.html

bar, barh

Purpose Plot bar graph (vertical and horizontal)

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs in
plot edit mode with the Property Editor. For details, see “Plotting Tools
— Interactive Plotting” in the MATLAB Graphics documentation and
“Creating Plots from the Workspace Browser” in the MATLAB Desktop
Tools documentation.

Syntax bar(Y)
bar(x,Y)
bar(...,width)
bar(...,'style')
bar(...,'bar_color')
bar(axes_handle,...)
barh(axes_handle,...)
h = bar(...)
barh(...)
h = barh(...)
hpatches = bar('v6',...)
hpatches = barh('v6',...)

Description A bar graph displays the values in a vector or matrix as horizontal or
vertical bars.

bar(Y) draws one bar for each element in Y. If Y is a matrix, bar groups
the bars produced by the elements in each row. The x-axis scale ranges
from 1 up to length(Y) when Y is a vector, and 1 to size(Y,1), which
is the number of rows, when Y is a matrix. The default is to scale the
x-axis to the highest x-tick on the plot, (a multiple of 10, 100, etc.). If
you want the x-axis scale to end exactly at the last bar, you can use the
default, and then, for example, type

2-313

bar, barh

set(gca,'xlim',[1 length(Y)])

at the MATLAB prompt.

bar(x,Y) draws a bar for each element in Y at locations specified in
x, where x is a vector defining the x-axis intervals for the vertical
bars. The x-values can be nonmonotonic, but cannot contain duplicate
values. If Y is a matrix, bar groups the elements of each row in Y at
corresponding locations in x.

bar(...,width) sets the relative bar width and controls the separation
of bars within a group. The default width is 0.8, so if you do not specify
x, the bars within a group have a slight separation. If width is 1, the
bars within a group touch one another.

bar(...,'style') specifies the style of the bars. 'style' is 'grouped'
or 'stacked'. 'group' is the default mode of display.

• 'grouped' displays m groups of n vertical bars, where m is the
number of rows and n is the number of columns in Y. The group
contains one bar per column in Y.

• 'stacked' displays one bar for each row in Y. The bar height is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

bar(...,'bar_color') displays all bars using the color specified by
the single-letter abbreviation 'r', 'g', 'b', 'c', 'm', 'y', 'k', or 'w'.

bar(axes_handle,...) and barh(axes_handle,...) plot into the
axes with the handle axes_handle instead of into the current axes (gca).

h = bar(...) returns a vector of handles to barseries graphics objects,
one for each created. When Y is a matrix, bar creates one barseries
graphics object per column in Y.

barh(...) and h = barh(...) create horizontal bars. Y determines
the bar length. The vector x is a vector defining the y-axis intervals for
horizontal bars. The x-values can be nonmonotonic, but cannot contain
duplicate values.

2-314

bar, barh

Backward-Compatible Versions

hpatches = bar('v6',...) and hpatches = barh('v6',...)
return the handles of patch objects instead of barseries objects for
compatibility with MATLAB 6.5 and earlier. See patch object properties
for a discussion of the properties you can set to control the appearance
of these bar graphs.

See “Plot Objects and Backward Compatibility” for more information.

Barseries
Objects

Creating a bar graph of an m-by-n matrix creates m groups of n barseries
objects. Each barseries object contains the data for corresponding x
values of each bar group (as indicated by the coloring of the bars).

Note that some barseries object properties set on an individual barseries
object set the values for all barseries objects in the graph. See the
barseries property descriptions for information on specific properties.

Examples Single Series of Data

This example plots a bell-shaped curve as a bar graph and sets the
colors of the bars to red.

x = -2.9:0.2:2.9;
bar(x,exp(-x.*x),'r')

2-315

bar, barh

Bar Graph Options

This example illustrates some bar graph options.

Y = round(rand(5,3)*10);
subplot(2,2,1)
bar(Y,'group')
title 'Group'
subplot(2,2,2)
bar(Y,'stack')
title 'Stack'
subplot(2,2,3)
barh(Y,'stack')
title 'Stack'
subplot(2,2,4)
bar(Y,1.5)
title 'Width = 1.5'

2-316

bar, barh

Setting Properties with Multiobject Graphs

This example creates a graph that displays three groups of bars and
contains five barseries objects. Since all barseries objects in a graph
share the same baseline, you can set values using any barseries object’s
BaseLine property. This example uses the first handle returned in h.

Y = randn(3,5);
h = bar(Y);
set(get(h(1),'BaseLine'),'LineWidth',2,'LineStyle',':')
colormap summer % Change the color scheme

2-317

bar, barh

See Also bar3, ColorSpec, patch, stairs, hist

“Area, Bar, and Pie Plots” on page 1-87 for related functions

Barseries Properties

“Bar and Area Graphs” for more examples

2-318

bar3, bar3h

Purpose Plot 3-D bar chart

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools documentation.

Syntax bar3(Y)
bar3(x,Y)
bar3(...,width)
bar3(...,'style')
bar3(...,LineSpec)
bar3(axes_handle,...)
h = bar3(...)
bar3h(...)
h = bar3h(...)

Description bar3 and bar3h draw three-dimensional vertical and horizontal bar
charts.

bar3(Y) draws a three-dimensional bar chart, where each element in Y
corresponds to one bar. When Y is a vector, the x-axis scale ranges from
1 to length(Y). When Y is a matrix, the x-axis scale ranges from 1 to
size(Y,2), which is the number of columns, and the elements in each
row are grouped together.

bar3(x,Y) draws a bar chart of the elements in Y at the locations
specified in x, where x is a vector defining the y-axis intervals for
vertical bars. The x-values can be nonmonotonic, but cannot contain
duplicate values. If Y is a matrix, bar3 clusters elements from the

2-319

bar3, bar3h

same row in Y at locations corresponding to an element in x. Values of
elements in each row are grouped together.

bar3(...,width) sets the width of the bars and controls the separation
of bars within a group. The default width is 0.8, so if you do not specify
x, bars within a group have a slight separation. If width is 1, the bars
within a group touch one another.

bar3(...,'style') specifies the style of the bars. 'style' is
'detached', 'grouped', or 'stacked'. 'detached' is the default
mode of display.

• 'detached' displays the elements of each row in Y as separate blocks
behind one another in the x direction.

• 'grouped' displays n groups of m vertical bars, where n is the
number of rows and m is the number of columns in Y. The group
contains one bar per column in Y.

• 'stacked' displays one bar for each row in Y. The bar height is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

bar3(...,LineSpec) displays all bars using the color specified by
LineSpec.

bar3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = bar3(...) returns a vector of handles to patch graphics objects,
one for each created. bar3 creates one patch object per column in Y.
When Y is a matrix, bar3 creates one patch graphics object per column
in Y.

bar3h(...) and h = bar3h(...) create horizontal bars. Y determines
the bar length. The vector x is a vector defining the y-axis intervals
for horizontal bars.

2-320

bar3, bar3h

Examples This example creates six subplots showing the effects of different
arguments for bar3. The data Y is a 7-by-3 matrix generated using
the cool colormap:

Y = cool(7);
subplot(3,2,1)
bar3(Y,'detached')
title('Detached')
subplot(3,2,2)
bar3(Y,0.25,'detached')
title('Width = 0.25')
subplot(3,2,3)
bar3(Y,'grouped')
title('Grouped')
subplot(3,2,4)
bar3(Y,0.5,'grouped')
title('Width = 0.5')
subplot(3,2,5)
bar3(Y,'stacked')
title('Stacked')
subplot(3,2,6)
bar3(Y,0.3,'stacked')
title('Width = 0.3')
colormap([1 0 0;0 1 0;0 0 1])

2-321

bar3, bar3h

2-322

bar3, bar3h

See Also bar, LineSpec, patch

“Area, Bar, and Pie Plots” on page 1-87 for related functions

“Bar and Area Graphs” for more examples

2-323

Barseries Properties

Purpose Define barseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for barseries objects.

See “Plot Objects” for more information on barseries objects.

Barseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

BarLayout
{grouped} | stacked

Specify grouped or stacked bars. Grouped bars display m groups
of n vertical bars, where m is the number of rows and n is the
number of columns in the input argument Y. The group contains
one bar per column in Y.

Stacked bars display one bar for each row in the input argument
Y. The bar height is the sum of the elements in the row. Each bar
is multicolored, with colors corresponding to distinct elements
and showing the relative contribution each row element makes to
the total sum.

BarWidth
scalar in range [0 1]

Width of individual bars. BarWidth specifies the relative bar
width and controls the separation of bars within a group. The
default width is 0.8, so if you do not specify x, the bars within a
group have a slight separation. If width is 1, the bars within a
group touch one another.

BaseLine
handle of baseline

2-324

Barseries Properties

Handle of the baseline object. This property contains the handle of
the line object used as the baseline. You can set the properties of
this line using its handle. For example, the following statements
create a bar graph, obtain the handle of the baseline from the
barseries object, and then set line properties that make the
baseline a dashed, red line.

bar_handle = bar(randn(10,1));
baseline_handle = get(bar_handle,'BaseLine');
set(baseline_handle,'LineStyle','--','Color','red')

BaseValue
double: y-axis value

Value where baseline is drawn. You can specify the value along
the y-axis (vertical bars) or x-axis (horizontal bars) at which
MATLAB draws the baseline.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

2-325

Barseries Properties

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

2-326

Barseries Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

2-327

Barseries Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string

Label used by plot legends. The legend function, the figure’s
active legend, and the plot browser use this text when displaying
labels for this object.

2-328

Barseries Properties

EdgeColor
{[0 0 0]} | none | ColorSpec

Color of line that separates filled areas. You can set the color of
the edges of filled areas to a three-element RGB vector or one of
the MATLAB predefined names, including the string none. The
default edge color is black. See ColorSpec for more information
on specifying color.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

2-329

Barseries Properties

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

2-330

Barseries Properties

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

2-331

Barseries Properties

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

2-332

Barseries Properties

HitTestArea
on | {off}

Select barseries object on bars or area of extent. This property
enables you to select barseries objects in two ways:

• Select by clicking bars (default).

• Select by clicking anywhere in the extent of the bar graph.

When HitTestArea is off, you must click the bars to select the
barseries object. When HitTestArea is on, you can select the
barseries object by clicking anywhere within the extent of the bar
graph (i.e., anywhere within a rectangle that encloses all the bars).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

2-333

Barseries Properties

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You

2-334

Barseries Properties

can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

ShowBaseLine
{on} | off

Turn baseline display on or off. This property determines whether
bar plots display a baseline from which the bars are drawn. By
default, the baseline is displayed.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create a barseries object and set the Tag
property:

t = bar(Y,'Tag','bar1')

When you want to access the barseries object, you can use findobj
to find the barseries object’s handle. The following statement
changes the FaceColor property of the object whose Tag is bar1.

2-335

Barseries Properties

set(findobj('Tag','bar1'),'FaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For barseries objects,
Type is hggroup.

The following statement finds all the hggroup objects in the
current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being

2-336

Barseries Properties

displayed. However, the object still exists and you can set and
query its properties.

XData
array

Location of bars. The x-axis intervals for the vertical bars or
y-axis intervals for horizontal bars (as specified by the x input
argument). If YData is a vector, XData must be the same size.
If YData is a matrix, the length of XData must be equal to the
number of rows in YData.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the

2-337

Barseries Properties

data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Bar plot data. YData contains the data plotted as bars (the Y
input argument). Each value in YData is represented by a bar in
the bar graph. If XYData is a matrix, the bar function creates a
"group" or a "stack" of bars for each column in the matrix. See
“Bar Graph Options” on page 2-316 for examples of grouped and
stacked bar graphs.

The input argument Y in the bar function calling syntax assigns
values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

2-338

Barseries Properties

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Note If you change one data source property to a variable that contains
data of a different dimension, you might cause the function to generate
a warning and not render the graph until you have changed all data
source properties to appropriate values.

2-339

base2dec

Purpose Convert base N number string to decimal number

Syntax d = base2dec('strn', base)

Description d = base2dec('strn', base) converts the string number strn of the
specified base into its decimal (base 10) equivalent. base must be an
integer between 2 and 36. If 'strn' is a character array, each row is
interpreted as a string in the specified base.

Examples The expression base2dec('212',3) converts 2123 to decimal, returning
23.

See Also dec2base

2-340

beep

Purpose Produce beep sound

Syntax beep
beep on
beep off
s = beep

Description beep produces your computer’s default beep sound.

beep on turns the beep on.

beep off turns the beep off.

s = beep returns the current beep mode (on or off).

2-341

besselh

Purpose Bessel function of third kind (Hankel function)

Syntax H = besselh(nu,K,Z)
H = besselh(nu,Z)
H = besselh(nu,K,Z,1)
[H,ierr] = besselh(...)

Definitions The differential equation

where is a nonnegative constant, is called Bessel’s equation, and its
solutions are known as Bessel functions. and form a
fundamental set of solutions of Bessel’s equation for noninteger .

is a second solution of Bessel’s equation – linearly independent
of – defined by

The relationship between the Hankel and Bessel functions is

where is besselj, and is bessely.

Description H = besselh(nu,K,Z) computes the Hankel function , where
K = 1 or 2, for each element of the complex array Z. If nu and Z are
arrays of the same size, the result is also that size. If either input is a
scalar, besselh expands it to the other input’s size. If one input is a row

2-342

besselh

vector and the other is a column vector, the result is a two-dimensional
table of function values.

H = besselh(nu,Z) uses K = 1.

H = besselh(nu,K,Z,1) scales by exp(-i*Z) if K = 1, and by
exp(+i*Z) if K = 2.

[H,ierr] = besselh(...) also returns completion flags in an array
the same size as H.

ierr Description

0 besselh successfully computed the Hankel function for
this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Examples This example generates the contour plots of the modulus and phase of

the Hankel function shown on page 359 of [1] Abramowitz and
Stegun, Handbook of Mathematical Functions.

It first generates the modulus contour plot

[X,Y] = meshgrid(-4:0.025:2,-1.5:0.025:1.5);
H = besselh(0,1,X+i*Y);
contour(X,Y,abs(H),0:0.2:3.2), hold on

2-343

besselh

then adds the contour plot of the phase of the same function.

contour(X,Y,(180/pi)*angle(H),-180:10:180); hold off

2-344

besselh

See Also besselj, bessely, besseli, besselk

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965.

2-345

besseli

Purpose Modified Bessel function of first kind

Syntax I = besseli(nu,Z)
I = besseli(nu,Z,1)
[I,ierr] = besseli(...)

Definitions The differential equation

where is a real constant, is called the modified Bessel’s equation, and
its solutions are known as modified Bessel functions.

and form a fundamental set of solutions of the modified
Bessel’s equation for noninteger . is defined by

where is the gamma function.

is a second solution, independent of . It can be computed
using besselk.

Description I = besseli(nu,Z) computes the modified Bessel function of the first
kind, , for each element of the array Z. The order nu need not
be an integer, but must be real. The argument Z can be complex. The
result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

2-346

besseli

I = besseli(nu,Z,1) computes
besseli(nu,Z).*exp(-abs(real(Z))).

[I,ierr] = besseli(...) also returns completion flags in an array
the same size as I.

ierr Description

0 besseli successfully computed the modified Bessel
function for this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Examples Example 1

format long
z = (0:0.2:1)';

besseli(1,z)

ans =
0

0.10050083402813
0.20402675573357
0.31370402560492
0.43286480262064
0.56515910399249

Example 2

besseli(3:9,(0:.2,10)',1) generates the entire table on page 423 of
[1] Abramowitz and Stegun, Handbook of Mathematical Functions

2-347

besseli

Algorithm The besseli functions use a Fortran MEX-file to call a library
developed by D.E. Amos [3] [4].

See Also airy, besselh, besselj, besselk, bessely

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-348

besselj

Purpose Bessel function of first kind

Syntax J = besselj(nu,Z)
J = besselj(nu,Z,1)
[J,ierr] = besselj(nu,Z)

Definition The differential equation

where is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions.

and form a fundamental set of solutions of Bessel’s
equation for noninteger . is defined by

where is the gamma function.

is a second solution of Bessel’s equation that is linearly
independent of . It can be computed using bessely.

Description J = besselj(nu,Z) computes the Bessel function of the first kind,
, for each element of the array Z. The order nu need not be an

integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

2-349

besselj

J = besselj(nu,Z,1) computes
besselj(nu,Z).*exp(-abs(imag(Z))).

[J,ierr] = besselj(nu,Z) also returns completion flags in an array
the same size as J.

ierr Description

0 besselj successfully computed the Bessel function
for this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Remarks The Bessel functions are related to the Hankel functions, also called
Bessel functions of the third kind,

where is besselh, is besselj, and is bessely.
The Hankel functions also form a fundamental set of solutions to
Bessel’s equation (see besselh).

Examples Example 1

format long
z = (0:0.2:1)';

besselj(1,z)

2-350

besselj

ans =
0

0.09950083263924
0.19602657795532
0.28670098806392
0.36884204609417
0.44005058574493

Example 2

besselj(3:9,(0:.2:10)') generates the entire table on page 398 of [1]
Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselj function uses a Fortran MEX-file to call a library
developed by D.E. Amos [3] [4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

See Also besselh, besseli, besselk, bessely

2-351

besselk

Purpose Modified Bessel function of second kind

Syntax K = besselk(nu,Z)
K = besselk(nu,Z,1)
[K,ierr] = besselk(...)

Definitions The differential equation

where is a real constant, is called the modified Bessel’s equation, and
its solutions are known as modified Bessel functions.

A solution of the second kind can be expressed as

where and form a fundamental set of solutions of the
modified Bessel’s equation for noninteger

and is the gamma function. is independent of .

can be computed using besseli.

Description K = besselk(nu,Z) computes the modified Bessel function of the
second kind, , for each element of the array Z. The order nu need
not be an integer, but must be real. The argument Z can be complex.
The result is real where Z is positive.

2-352

besselk

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

K = besselk(nu,Z,1) computes besselk(nu,Z).*exp(Z).

[K,ierr] = besselk(...) also returns completion flags in an array
the same size as K.

ierr Description

0 besselk successfully computed the modified Bessel
function for this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Examples Example 1

format long
z = (0:0.2:1)';

besselk(1,z)

ans =
Inf

4.77597254322047
2.18435442473269
1.30283493976350
0.86178163447218
0.60190723019723

2-353

besselk

Example 2

besselk(3:9,(0:.2:10)',1) generates part of the table on page 424 of
[1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselk function uses a Fortran MEX-file to call a library
developed by D.E. Amos [3][4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

See Also airy, besselh, besseli, besselj, bessely

2-354

bessely

Purpose Bessel function of second kind

Syntax Y = bessely(nu,Z)
Y = bessely(nu,Z,1)
[Y,ierr] = bessely(nu,Z)

Definition The differential equation

where is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions.

A solution of the second kind can be expressed as

where and form a fundamental set of solutions of
Bessel’s equation for noninteger

and is the gamma function. is linearly independent of
.

can be computed using besselj.

Description Y = bessely(nu,Z) computes Bessel functions of the second kind,
, for each element of the array Z. The order nu need not be an

integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

2-355

bessely

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

Y = bessely(nu,Z,1) computes
bessely(nu,Z).*exp(-abs(imag(Z))).

[Y,ierr] = bessely(nu,Z) also returns completion flags in an array
the same size as Y.

ierr Description

0 bessely successfully computed the Bessel function
for this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Remarks The Bessel functions are related to the Hankel functions, also called
Bessel functions of the third kind,

where is besselh, is besselj, and is bessely.
The Hankel functions also form a fundamental set of solutions to
Bessel’s equation (see besselh).

2-356

bessely

Examples Example 1

format long
z = (0:0.2:1)';

bessely(1,z)

ans =
-Inf

-3.32382498811185
-1.78087204427005
-1.26039134717739
-0.97814417668336
-0.78121282130029

Example 2

bessely(3:9,(0:.2:10)') generates the entire table on page 399 of [1]
Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The bessely function uses a Fortran MEX-file to call a library
developed by D. E Amos [3] [4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-357

bessely

See Also besselh, besseli, besselj, besselk

2-358

beta

Purpose Beta function

Syntax B = beta(Z,W)

Definition The beta function is

where is the gamma function.

Description B = beta(Z,W) computes the beta function for corresponding elements
of arrays Z and W. The arrays must be real and nonnegative. They must
be the same size, or either can be scalar.

Examples In this example, which uses integer arguments,

beta(n,3)
= (n-1)!*2!/(n+2)!
= 2/(n*(n+1)*(n+2))

is the ratio of fairly small integers, and the rational format is able to
recover the exact result.

format rat
beta((0:10)',3)

ans =

1/0
1/3
1/12
1/30
1/60
1/105
1/168
1/252

2-359

beta

1/360
1/495
1/660

Algorithm beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))

See Also betainc, betaln, gammaln

2-360

betainc

Purpose Incomplete beta function

Syntax I = betainc(X,Z,W)

Definition The incomplete beta function is

where , the beta function, is defined as

and is the gamma function.

Description I = betainc(X,Z,W) computes the incomplete beta function for
corresponding elements of the arrays X, Z, and W. The elements of X must
be in the closed interval . The arrays Z and W must be nonnegative
and real. All arrays must be the same size, or any of them can be scalar.

Examples format long
betainc(.5,(0:10)',3)

ans =
1.00000000000000
0.87500000000000
0.68750000000000
0.50000000000000
0.34375000000000
0.22656250000000
0.14453125000000
0.08984375000000
0.05468750000000
0.03271484375000
0.01928710937500

2-361

betainc

See Also beta, betaln

2-362

betaln

Purpose Logarithm of beta function

Syntax L = betaln(Z,W)

Description L = betaln(Z,W) computes the natural logarithm of the beta function
log(beta(Z,W)), for corresponding elements of arrays Z and W, without
computing beta(Z,W). Since the beta function can range over very large
or very small values, its logarithm is sometimes more useful.

Z and W must be real and nonnegative. They must be the same size, or
either can be scalar.

Examples x = 510
betaln(x,x)

ans =
-708.8616

-708.8616 is slightly less than log(realmin). Computing beta(x,x)
directly would underflow (or be denormal).

Algorithm betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)

See Also beta, betainc, gammaln

2-363

bicg

Purpose Biconjugate gradients method

Syntax x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...)
[x,flag,relres,iter] = bicg(A,b,...)
[x,flag,relres,iter,resvec] = bicg(A,b,...)

Description x = bicg(A,b) attempts to solve the system of linear equations A*x =
b for x. The n-by-n coefficient matrix A must be square and should be
large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x,'notransp') returns A*x
and afun(x,'transp') returns A'*x. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If bicg converges, it displays a message to that effect. If bicg fails
to converge after the maximum number of iterations or halts for any
reason, it prints a warning message that includes the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

bicg(A,b,tol) specifies the tolerance of the method. If tol is [], then
bicg uses the default, 1e-6.

bicg(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then bicg uses the default, min(n,20).

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use
the preconditioner M or M = M1*M2 and effectively solve the system

2-364

bicg

inv(M)*A*x = inv(M)*b for x. If M is [] then bicg applies
no preconditioner. M can be a function handle mfun such that
mfun(x,'notransp') returns M\x and mfun(x,'transp') returns M'\x.

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then bicg uses the default, an all-zero vector.

[x,flag] = bicg(A,b,...) also returns a convergence flag.

Flag Convergence

0 bicg converged to the desired tolerance tol within
maxit iterations.

1 bicg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicg stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during bicg
became too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = bicg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicg(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,...) also returns a
vector of the residual norms at each iteration including norm(b-A*x0).

Examples Example 1

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);

2-365

bicg

b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = bicg(A,b,tol,maxit,M1,M2);

displays this message:

bicg converged at iteration 9 to a solution with relative
residual 5.3e-009

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an
M-file run_bicg that

• Calls bicg with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_bicg
are available to afun.

The following shows the code for run_bicg:

function x1 = run_bicg
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = bicg(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag,'transp') % y = A'*x

2-366

bicg

y = 4 * x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag,'notransp') % y = A*x
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end
end

end

When you enter

x1=run_bicg;

MATLAB displays the message

bicg converged at iteration 9 to a solution with ...
relative residual
5.3e-009

Example 3

This example demonstrates the use of a preconditioner. Start with A
= west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);

You can accurately solve A*x = b using backslash since A is not so
large.

x = A \ b;
norm(b-A*x) / norm(b)

ans =
8.3154e-017

2-367

bicg

Now try to solve A*x = b with bicg.

[x,flag,relres,iter,resvec] = bicg(A,b)

flag =
1

relres =
1

iter =
0

The value of flag indicates that bicg iterated the default 20 times
without converging. The value of iter shows that the method
behaved so badly that the initial all-zero guess was better than all the
subsequent iterates. The value of relres supports this: relres =
norm(b-A*x)/norm(b) = norm(b)/norm(b) = 1. You can confirm that
the unpreconditioned method oscillates rather wildly by plotting the
relative residuals at each iteration.

semilogy(0:20,resvec/norm(b),'-o')
xlabel('Iteration Number')
ylabel('Relative Residual')

2-368

bicg

Now, try an incomplete LU factorization with a drop tolerance of 1e-5
for the preconditioner.

[L1,U1] = luinc(A,1e-5);
Warning: Incomplete upper triangular factor has 1 zero diagonal.

It cannot be used as a preconditioner for an iterative
method.

nnz(A), nnz(L1), nnz(U1)

ans =
1887

ans =
5562

ans =
4320

2-369

bicg

The zero on the main diagonal of the upper triangular U1 indicates that
U1 is singular. If you try to use it as a preconditioner,

[x,flag,relres,iter,resvec] = bicg(A,b,1e-6,20,L1,U1)

flag =
2

relres =
1

iter =
0

resvec =
7.0557e+005

the method fails in the very first iteration when it tries to solve a system
of equations involving the singular U1 using backslash. bicg is forced to
return the initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.

[L2,U2] = luinc(A,1e-6);

nnz(L2), nnz(U2)

ans =
6231

ans =
4559

This time U2 is nonsingular and may be an appropriate preconditioner.

[x,flag,relres,iter,resvec] = bicg(A,b,1e-15,10,L2,U2)

flag =
0

relres =
2.8664e-016

iter =

2-370

bicg

8

and bicg converges to within the desired tolerance at iteration number
8. Decreasing the value of the drop tolerance increases the fill-in of the
incomplete factors but also increases the accuracy of the approximation
to the original matrix. Thus, the preconditioned system becomes closer
to inv(U)*inv(L)*L*U*x = inv(U)*inv(L)*b, where L and U are the
true LU factors, and closer to being solved within a single iteration.

The next graph shows the progress of bicg using six different
incomplete LU factors as preconditioners. Each line in the graph is
labeled with the drop tolerance of the preconditioner used in bicg.

References [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

2-371

bicg

See Also bicgstab, cgs, gmres, ilu, lsqr, luinc, minres, pcg, qmr, symmlq,
function_handle (@), mldivide (\)

2-372

bicgstab

Purpose Biconjugate gradients stabilized method

Syntax x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstab(A,b,...)
[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

Description x = bicgstab(A,b) attempts to solve the system of linear equations
A*x=b for x. The n-by-n coefficient matrix A must be square and should
be large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x) returns A*x. See “Function
Handles” in the MATLAB Programming documentation for more
information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If bicgstab converges, a message to that effect is displayed. If bicgstab
fails to converge after the maximum number of iterations or halts
for any reason, a warning message is printed displaying the relative
residual norm(b-A*x)/norm(b) and the iteration number at which the
method stopped or failed.

bicgstab(A,b,tol) specifies the tolerance of the method. If tol is [],
then bicgstab uses the default, 1e-6.

bicgstab(A,b,tol,maxit) specifies the maximum number of
iterations. If maxit is [], then bicgstab uses the default, min(n,20).

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2)
use preconditioner M or M = M1*M2 and effectively solve the system

2-373

bicgstab

inv(M)*A*x = inv(M)*b for x. If M is [] then bicgstab applies no
preconditioner. M can be a function handle mfun such that mfun(x)
returns M\x.

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0
is [], then bicgstab uses the default, an all zero vector.

[x,flag] = bicgstab(A,b,...) also returns a convergence flag.

Flag Convergence

0 bicgstab converged to the desired tolerance tol
within maxit iterations.

1 bicgstab iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicgstab stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during
bicgstab became too small or too large to continue
computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = bicgstab(A,b,...) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicgstab(A,b,...) also returns the
iteration number at which x was computed, where 0 <= iter <= maxit.
iter can be an integer + 0.5, indicating convergence halfway through
an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,...) also returns
a vector of the residual norms at each half iteration, including
norm(b-A*x0).

2-374

bicgstab

Example Example 1

This example first solves Ax = b by providing A and the preconditioner
M1 directly as arguments.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = bicgstab(A,b,tol,maxit,M1);

displays the message

bicgstab converged at iteration 12.5 to a solution with relative
residual 6.7e-014

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun, and the preconditioner M1 with a
handle to a backsolve function mfun. The example is contained in an
M-file run_bicgstab that

• Calls bicgstab with the function handle @afun as its first argument.

• Contains afun and mfun as nested functions, so that all variables in
run_bicgstab are available to afun and mfun.

The following shows the code for run_bicgstab:

function x1 = run_bicgstab
n = 21;
A = gallery('wilk',n);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x1 = bicgstab(@afun,b,tol,maxit,@mfun);

2-375

bicgstab

function y = afun(x)
y = [0; x(1:n-1)] + ...

[((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
[x(2:n); 0];

end

function y = mfun(r)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

end
end

When you enter

x1 = run_bicgstab;

MATLAB displays the message

bicgstab converged at iteration 12.5 to a solution with relative
residual 6.7e-014

Example 3

This examples demonstrates the use of a preconditioner. Start with A
= west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = bicgstab(A,b)

flag is 1 because bicgstab does not converge to the default tolerance
1e-6 within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = bicgstab(A,b,1e-6,20,L1,U1)

2-376

bicgstab

flag1 is 2 because the upper triangular U1 has a zero on its diagonal.
This causes bicgstab to fail in the first iteration when it tries to solve
a system such as U1*y = r using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,1e-15,10,L2,U2)

flag2 is 0 because bicgstab converges to the tolerance of 3.1757e-016
(the value of relres2) at the sixth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(13) = norm(b-A*x2).
You can follow the progress of bicgstab by plotting the relative
residuals at the halfway point and end of each iteration starting from
the initial estimate (iterate number 0).

semilogy(0:0.5:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

2-377

bicgstab

References [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] van der Vorst, H.A., "BI-CGSTAB: A fast and smoothly converging
variant of BI-CG for the solution of nonsymmetric linear systems,"
SIAM J. Sci. Stat. Comput., March 1992, Vol. 13, No. 2, pp. 631-644.

See Also bicg, cgs, gmres, lsqr, luinc, minres, pcg, qmr, symmlq,
function_handle (@), mldivide (\)

2-378

bin2dec

Purpose Convert binary number string to decimal number

Syntax bin2dec(binarystr)

Description bin2dec(binarystr) interprets the binary string binarystr and
returns the equivalent decimal number.

bin2dec ignores any space (' ') characters in the input string.

Examples Binary 010111 converts to decimal 23:

bin2dec('010111')
ans =

23

Because space characters are ignored, this string yields the same result:

bin2dec(' 010 111 ')
ans =

23

See Also dec2bin

2-379

binary

Purpose Set FTP transfer type to binary

Syntax binary(f)

Description binary(f) sets the FTP download and upload mode to binary, which
does not convert new lines, where f was created using ftp. Use this
function when downloading or uploading any nontext file, such as an
executable or ZIP archive.

Examples Connect to the MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp
function to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: ascii

Note that the FTP object is now set to ASCII mode.

Use the binary function to set the FTP mode to binary, and use the
disp function to display the FTP object.

binary(tmw)

2-380

binary

disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Note that the FTP object’s mode is again set to binary.

See Also ftp, ascii

2-381

bitand

Purpose Bitwise AND

Syntax C = bitand(A, B)

Description C = bitand(A, B) returns the bitwise AND of arguments A and B,
where A and B are unsigned integers or arrays of unsigned integers.

Examples Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise AND on these numbers
yields 01001, or 9:

C = bitand(uint8(13), uint8(27))
C =

9

Example 2

Create a truth table for a logical AND operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitand(A, B)
TT =

0 0
0 1

See Also bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor

2-382

bitcmp

Purpose Bitwise complement

Syntax C = bitcmp(A)
C = bitcmp(A, n)

Description C = bitcmp(A) returns the bitwise complement of A, where A is an
unsigned integer or an array of unsigned integers.

C = bitcmp(A, n) returns the bitwise complement of A as an n-bit
unsigned integer C. Input A may not have any bits set higher than n
(that is, A may not have a value greater than 2^n-1). The value of n can
be no greater than the number of bits in the unsigned integer class of
A. For example, if the class of A is uint32, then n must be a positive
integer less than 32.

Examples Example 1

With eight-bit arithmetic, the one’s complement of 01100011 (decimal
99) is 10011100 (decimal 156):

C = bitcmp(uint8(99))
C =

156

Example 2

The complement of hexadecimal A5 (decimal 165) is 5A:

x = hex2dec('A5')
x =

165

dec2hex(bitcmp(x, 8))
ans =
5A

Next, find the complement of hexadecimal 000000A5:

dec2hex(bitcmp(x, 32))

2-383

bitcmp

ans =
FFFFFF5A

See Also bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor

2-384

bitget

Purpose Bit at specified position

Syntax C = bitget(A, bit)

Description C = bitget(A, bit) returns the value of the bit at position bit in
A. Operand A must be an unsigned integer or an array of unsigned
integers, and bit must be a number between 1 and the number of bits
in the unsigned integer class of A (e.g., 32 for the uint32 class).

Examples Example 1

The dec2bin function converts decimal numbers to binary. However, you
can also use the bitget function to show the binary representation of a
decimal number. Just test successive bits from most to least significant:

disp(dec2bin(13))
1101

C = bitget(uint8(13), 4:-1:1)
C =

1 1 0 1

Example 2

Prove that intmax sets all the bits to 1:

a = intmax('uint8');
if all(bitget(a, 1:8))

disp('All the bits have value 1.')
end

All the bits have value 1.

See Also bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor

2-385

bitmax

Purpose Maximum double-precision floating-point integer

Syntax bitmax

Description bitmax returns the maximum unsigned double-precision floating-point
integer for your computer. It is the value when all bits are set, namely

the value .

Note Instead of integer-valued double-precision variables, use unsigned
integers for bit manipulations and replace bitmax with intmax.

Examples Display in different formats the largest floating point integer and the
largest 32 bit unsigned integer:

format long e
bitmax
ans =

9.007199254740991e+015

intmax('uint32')
ans =

4294967295

format hex
bitmax
ans =

433fffffffffffff

intmax('uint32')
ans =

ffffffff

In the second bitmax statement, the last 13 hex digits of bitmax
are f, corresponding to 52 1’s (all 1’s) in the mantissa of the binary

2-386

bitmax

representation. The first 3 hex digits correspond to the sign bit 0 and
the 11 bit biased exponent 10000110011 in binary (1075 in decimal),
and the actual exponent is (1075-1023) = 52. Thus the binary value of
bitmax is 1.111...111 x 2^52 with 52 trailing 1’s, or 2^53-1.

See Also bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

2-387

bitor

Purpose Bitwise OR

Syntax C = bitor(A, B)

Description C = bitor(A, B) returns the bitwise OR of arguments A and B, where
A and B are unsigned integers or arrays of unsigned integers.

Examples Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise OR on these numbers
yields 11111, or 31.

C = bitor(uint8(13), uint8(27))
C =

31

Example 2

Create a truth table for a logical OR operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitor(A, B)
TT =

0 1
1 1

See Also bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor

2-388

bitset

Purpose Set bit at specified position

Syntax C = bitset(A, bit)
C = bitset(A, bit, v)

Description C = bitset(A, bit) sets bit position bit in A to 1 (on). A must be an
unsigned integer or an array of unsigned integers, and bit must be a
number between 1 and the number of bits in the unsigned integer class
of A (e.g., 32 for the uint32 class).

C = bitset(A, bit, v) sets the bit at position bit to the value v,
which must be either 0 or 1.

Examples Example 1

Setting the fifth bit in the five-bit binary representation of the integer 9
(01001) yields 11001, or 25:

C = bitset(uint8(9), 5)
C =

25

Example 2

Repeatedly subtract powers of 2 from the largest uint32 value:

a = intmax('uint32')
for k = 1:32

a = bitset(a, 32-k+1, 0)
end

See Also bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor

2-389

bitshift

Purpose Shift bits specified number of places

Syntax C = bitshift(A, k)
C = bitshift(A, k, n)

Description C = bitshift(A, k) returns the value of A shifted by k bits. Input
argument A must be an unsigned integer or an array of unsigned
integers. Shifting by k is the same as multiplication by 2^k. Negative
values of k are allowed and this corresponds to shifting to the right, or
dividing by 2^abs(k) and truncating to an integer. If the shift causes C
to overflow the number of bits in the unsigned integer class of A, then
the overflowing bits are dropped.

C = bitshift(A, k, n) causes any bits that overflow n bits to be
dropped. The value of n must be less than or equal to the length in bits
of the unsigned integer class of A (e.g., n <= 32 for uint32).

Instead of using bitshift(A, k, 8) or another power of 2 for n,
consider using bitshift(uint8(A), k) or the appropriate unsigned
integer class for A.

Examples Example 1

Shifting 1100 (12, decimal) to the left two bits yields 110000 (48,
decimal).

C = bitshift(12, 2)
C =

48

Example 2

Repeatedly shift the bits of an unsigned 16 bit value to the left until all
the nonzero bits overflow. Track the progress in binary:

a = intmax('uint16');
disp(sprintf(...

'Initial uint16 value %5d is %16s in binary', ...
a, dec2bin(a)))

2-390

bitshift

for k = 1:16
a = bitshift(a, 1);
disp(sprintf(...

'Shifted uint16 value %5d is %16s in binary',...
a, dec2bin(a)))

end

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, fix

2-391

bitxor

Purpose Bitwise XOR

Syntax C = bitxor(A, B)

Description C = bitxor(A, B) returns the bitwise XOR of arguments A and B,
where A and B are unsigned integers or arrays of unsigned integers.

Examples Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise XOR on these numbers
yields 10110, or 22.

C = bitxor(uint8(13), uint8(27))
C =

22

Example 2

Create a truth table for a logical XOR operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitxor(A, B)
TT =

0 1
1 0

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift

2-392

blanks

Purpose Create string of blank characters

Syntax blanks(n)

Description blanks(n) is a string of n blanks.

Examples blanks is useful with the display function. For example,

disp(['xxx' blanks(20) 'yyy'])

displays twenty blanks between the strings 'xxx' and 'yyy'.

disp(blanks(n)') moves the cursor down n lines.

See Also clc, format, home

2-393

blkdiag

Purpose Construct block diagonal matrix from input arguments

Syntax out = blkdiag(a,b,c,d,...)

Description out = blkdiag(a,b,c,d,...), where a, b, c, d, ... are matrices,
outputs a block diagonal matrix of the form

The input matrices do not have to be square, nor do they have to be of
equal size.

See Also diag, horzcat, vertcat

2-394

box

Purpose Axes border

Syntax box on
box off
box
box(axes_handle,...)

Description box on displays the boundary of the current axes.

box off does not display the boundary of the current axes.

box toggles the visible state of the current axes boundary.

box(axes_handle,...) uses the axes specified by axes_handle instead
of the current axes.

Algorithm The box function sets the axes Box property to on or off.

See Also axes, grid

“Axes Operations” on page 1-95 for related functions

2-395

break

Purpose Terminate execution of for or while loop

Syntax break

Description break terminates the execution of a for or while loop. Statements in
the loop that appear after the break statement are not executed.

In nested loops, break exits only from the loop in which it occurs.
Control passes to the statement that follows the end of that loop.

Remarks break is not defined outside a for or while loop. Use return in this
context instead.

Examples The example below shows a while loop that reads the contents of the
file fft.m into a MATLAB character array. A break statement is used
to exit the while loop when the first empty line is encountered. The
resulting character array contains the M-file help for the fft program.

fid = fopen('fft.m','r');
s = '';
while ~feof(fid)

line = fgetl(fid);
if isempty(line), break, end
s = strvcat(s,line);

end
disp(s)

See Also for, while, end, continue, return

2-396

brighten

Purpose Brighten or darken colormap

Syntax brighten(beta)
brighten(h,beta)
newmap = brighten(beta)
newmap = brighten(cmap,beta)

Description brighten increases or decreases the color intensities in a colormap.
The modified colormap is brighter if 0 < beta < 1 and darker if 1
< beta < 0.

brighten(beta) replaces the current colormap with a brighter or
darker colormap of essentially the same colors. brighten(beta),
followed by brighten(-beta), where beta < 1, restores the original
map.

brighten(h,beta) brightens all objects that are children of the figure
having the handle h.

newmap = brighten(beta) returns a brighter or darker version of the
current colormap without changing the display.

newmap = brighten(cmap,beta) returns a brighter or darker version
of the colormap cmap without changing the display.

Examples Brighten and then darken the current colormap:

beta = .5; brighten(beta);
beta = -.5; brighten(beta);

Algorithm The values in the colormap are raised to the power of gamma, where
gamma is

brighten has no effect on graphics objects defined with true color.

2-397

brighten

See Also colormap, rgbplot

“Color Operations” on page 1-97 for related functions

“Altering Colormaps” for more information

2-398

builddocsearchdb

Purpose Build searchable documentation database

Syntax builddocsearchdb help_location

Description builddocsearchdb help_location builds a searchable database
of user-added HTML and related help files in the specified help
location. The help_location argument is the full path to the directory
containing the help files. The database enables the Help browser to
search for content within the help files.

builddocsearchdb creates a directory named helpsearch under
help_location. The helpsearch directory contains the search
database files. Add the location of the helpsearch directory to your
info.xml file.

The helpsearch directory works only with the version of MATLAB
used to create it.

For a full discussion of this process, refer to “Adding Your Own Help
Files in the Help Browser”.

Examples Build a search database for the documentation files found at
D:\work\mytoolbox\help.

builddocsearchdb D:\work\mytoolbox\help

See Also doc, help

2-399

builtin

Purpose Execute built-in function from overloaded method

Syntax builtin(function, x1, ..., xn)
[y1, ..., yn] = builtin(function, x1, ..., xn)

Description builtin is used in methods that overload built-in functions to execute
the original built-in function. If function is a string containing the
name of a built-in function, then

builtin(function, x1, ..., xn) evaluates the specified function
at the given arguments x1 through xn. The function argument must
be a string containing a valid function name. function cannot be a
function handle.

[y1, ..., yn] = builtin(function, x1, ..., xn) returns
multiple output arguments.

Remarks builtin(...) is the same as feval(...) except that it calls the original
built-in version of the function even if an overloaded one exists. (For
this to work you must never overload builtin.)

See Also feval

2-400

bsxfun

Purpose Applies element-by-element binary operation to two arrays with
singleton expansion enabled

Syntax C = bsxfun(fun,A,B)

Description C = bsxfun(fun,A,B) applies an element-by-element binary operation
to arrays A and B, with singleton expansion enabled. fun is a function
handle, and can either be an M-file function or one of the following
built-in functions:

@plus Plus

@minus Minus

@times Array multiply

@rdivide Right array divide

@ldivide Left array divide

@power Array power

@max Binary maximum

@min Binary minimum

@rem Remainder after division

@mod Modulus after division

@atan2 Four quadrant inverse tangent

@hypot Square root of sum of squares

@eq Equal

@ne Not equal

@lt Less than

@le Less than or equal to

@gt Greater than

@ge Greater than or equal to

2-401

bsxfun

@and Element-wise logical AND

@or Element-wise logical OR

@xor Logical exclusive OR

If an M-file function is specified, it must be able to accept either two
column vectors of the same size, or one column vector and one scalar,
and return as output a column vector of the size as the input values.

Each dimension of A and B must either be equal to each other, or equal
to 1. Whenever a dimension of A or B is singleton (equal to 1), the array
is virtually replicated along the dimension to match the other array.
The array may be diminished if the corresponding dimension of the
other array is 0.

The size of the output array C is equal to:
max(size(A),size(B)).*(size(A)>0 & size(B)>0).

Examples In this example, bsxfun is used to subtract the column means from
the matrix A.

A = magic(5);
A = bsxfun(@minus, A, mean(A))
A =

4 11 -12 -5 2
10 -8 -6 1 3
-9 -7 0 7 9
-3 -1 6 8 -10
-2 5 12 -11 -4

See Also repmat, arrayfun

2-402

bvp4c

Purpose Solve boundary value problems for ordinary differential equations

Syntax sol = bvp4c(odefun,bcfun,solinit)
sol = bvp4c(odefun,bcfun,solinit,options)
solinit = bvpinit(x, yinit, params)

Arguments odefun A function handle that evaluates the differential
equations . It can have the form

dydx = odefun(x,y)
dydx = odefun(x,y,parameters)

where x is a scalar corresponding to , and y is a column
vector corresponding to . parameters is a vector of
unknown parameters. The output dydx is a column
vector.

bcfun A function handle that computes the residual in the
boundary conditions. For two-point boundary value
conditions of the form , bcfun can have
the form

res = bcfun(ya,yb)
res = bcfun(ya,yb,parameters)

where ya and yb are column vectors corresponding to
and . parameters is a vector of unknown

parameters. The output res is a column vector.

See “Multipoint Boundary Value Problems” on page
2-406 for a description of bcfun for multipoint boundary
value problems.

solinit A structure containing the initial guess for a solution.
You create solinit using the function bvpinit. solinit
has the following fields.

2-403

bvp4c

x Ordered nodes of the initial mesh.
Boundary conditions are imposed at =
solinit.x(1) and = solinit.x(end).

y Initial guess for the solution such that
solinit.y(:,i) is a guess for the
solution at the node solinit.x(i).

parameters Optional. A vector that provides an
initial guess for unknown parameters.

The structure can have any name, but the fields must be
named x, y, and parameters. You can form solinit with
the helper function bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create
using the bvpset function. See bvpset for details.

Description sol = bvp4c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

on the interval [a,b] subject to two-point boundary value conditions

odefun and bcfun are function handles. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions” in the
MATLAB mathematics documentation, explains how to provide
additional parameters to the function odefun, as well as the boundary
condition function bcfun, if necessary.

bvp4c can also solve multipoint boundary value problems. See
“Multipoint Boundary Value Problems” on page 2-406. You can use the
function bvpinit to specify the boundary points, which are stored in
the input argument solinit. See the reference page for bvpinit for
more information.

2-404

bvp4c

The bvp4c solver can also find unknown parameters for problems
of the form

where corresponds to parameters. You provide bvp4c an initial
guess for any unknown parameters in solinit.parameters. The
bvp4c solver returns the final values of these unknown parameters
in sol.parameters.

bvp4c produces a solution that is continuous on [a,b] and has a
continuous first derivative there. Use the function deval and the
output sol of bvp4c to evaluate the solution at specific points xint in
the interval [a,b].

sxint = deval(sol,xint)

The structure sol returned by bvp4c has the following fields:

sol.x Mesh selected by bvp4c

sol.y Approximation to at the mesh points of
sol.x

sol.yp Approximation to at the mesh points of
sol.x

sol.parameters Values returned by bvp4c for the unknown
parameters, if any

sol.solver ’bvp4c’

The structure sol can have any name, and bvp4c creates the fields x,
y, yp, parameters, and solver.

sol = bvp4c(odefun,bcfun,solinit,options) solves as above with
default integration properties replaced by the values in options, a
structure created with the bvpset function. See bvpset for details.

2-405

bvp4c

solinit = bvpinit(x, yinit, params) forms the initial guess solinit
with the vector params of guesses for the unknown parameters.

Singular Boundary Value Problems

bvp4c solves a class of singular boundary value problems, including
problems with unknown parameters p, of the form

The interval is required to be [0, b] with b > 0. Often such problems
arise when computing a smooth solution of ODEs that result from
partial differential equations (PDEs) due to cylindrical or spherical
symmetry. For singular problems, you specify the (constant) matrix
S as the value of the 'SingularTerm' option of bvpset, and odefun
evaluates only f(x, y, p). The boundary conditions must be consistent
with the necessary condition and the initial guess should
satisfy this condition.

Multipoint Boundary Value Problems

bvp4c can solve multipoint boundary value problems where

are boundary points in the interval
. The points represent interfaces that divide
into regions. bvp4c enumerates the regions from left to right

(from a to b), with indices starting from 1. In region k, ,
bvp4c evaluates the derivative as

yp = odefun(x, y, k)

In the boundary conditions function

bcfun(yleft, yright)

yleft(:, k) is the solution at the left boundary of . Similarly,
yright(:, k) is the solution at the right boundary of region k. In
particular,

2-406

bvp4c

yleft(:, 1) = y(a)

and

yright(:, end) = y(b)

When you create an initial guess with

solinit = bvpinit(xinit, yinit),

use double entries in xinit for each interface point. See the reference
page for bvpinit for more information.

If yinit is a function, bvpinit calls y = yinit(x, k) to get an initial
guess for the solution at x in region k. In the solution structure sol
returned by bpv4c, sol.x has double entries for each interface point.
The corresponding columns of sol.y contain the left and right solution
at the interface, respectively.

For an example of solving a three-point boundary value problem, type
threebvp at the MATLAB command prompt to run a demonstration.

Examples Example 1

Boundary value problems can have multiple solutions and one purpose
of the initial guess is to indicate which solution you want. The
second-order differential equation

has exactly two solutions that satisfy the boundary conditions

Prior to solving this problem with bvp4c, you must write the differential
equation as a system of two first-order ODEs

2-407

bvp4c

Here and . This system has the required form

The function and the boundary conditions are coded in MATLAB
as functions twoode and twobc.

function dydx = twoode(x,y)
dydx = [y(2)

-abs(y(1))];

function res = twobc(ya,yb)
res = [ya(1)

yb(1) + 2];

Form a guess structure consisting of an initial mesh of five equally
spaced points in [0,4] and a guess of constant values and

with the command

solinit = bvpinit(linspace(0,4,5),[1 0]);

Now solve the problem with

sol = bvp4c(@twoode,@twobc,solinit);

Evaluate the numerical solution at 100 equally spaced points and plot
with

x = linspace(0,4);
y = deval(sol,x);
plot(x,y(1,:));

2-408

bvp4c

You can obtain the other solution of this problem with the initial guess

solinit = bvpinit(linspace(0,4,5),[-1 0]);

2-409

bvp4c

Example 2

This boundary value problem involves an unknown parameter. The task
is to compute the fourth () eigenvalue of Mathieu’s equation

Because the unknown parameter is present, this second-order
differential equation is subject to three boundary conditions

It is convenient to use subfunctions to place all the functions required
by bvp4c in a single M-file.

function mat4bvp

2-410

bvp4c

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);
sol = bvp4c(@mat4ode,@mat4bc,solinit);

fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
sol.parameters)

xint = linspace(0,pi);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')
% --
function dydx = mat4ode(x,y,lambda)
q = 5;
dydx = [y(2)

-(lambda - 2*q*cos(2*x))*y(1)];
% --
function res = mat4bc(ya,yb,lambda)
res = [ya(2)

yb(2)
ya(1)-1];

% --
function yinit = mat4init(x)
yinit = [cos(4*x)

-4*sin(4*x)];

The differential equation (converted to a first-order system) and the
boundary conditions are coded as subfunctions mat4ode and mat4bc,
respectively. Because unknown parameters are present, these functions
must accept three input arguments, even though some of the arguments
are not used.

The guess structure solinit is formed with bvpinit. An initial guess
for the solution is supplied in the form of a function mat4init. We chose

2-411

bvp4c

because it satisfies the boundary conditions and has the
correct qualitative behavior (the correct number of sign changes). In the
call to bvpinit, the third argument (lambda = 15) provides an initial
guess for the unknown parameter .

After the problem is solved with bvp4c, the field sol.parameters
returns the value , and the plot shows the eigenfunction
associated with this eigenvalue.

Algorithms bvp4c is a finite difference code that implements the three-stage
Lobatto IIIa formula. This is a collocation formula and the collocation
polynomial provides a C1-continuous solution that is fourth-order

2-412

bvp4c

accurate uniformly in [a,b]. Mesh selection and error control are based
on the residual of the continuous solution.

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, “Solving Boundary
Value Problems for Ordinary Differential Equations in MATLAB with
bvp4c,” available at http://www.mathworks.com/bvp_tutorial

See Also function_handle (@), bvpget, bvpinit, bvpset, bvpxtend, deval

2-413

http://www.mathworks.com/bvp_tutorial

bvpget

Purpose Extract properties from options structure created with bvpset

Syntax val = bvpget(options,'name')
val = bvpget(options,'name',default)

Description val = bvpget(options,'name') extracts the value of the named
property from the structure options, returning an empty matrix if
the property value is not specified in options. It is sufficient to type
only the leading characters that uniquely identify the property. Case is
ignored for property names. [] is a valid options argument.

val = bvpget(options,'name',default) extracts the named property
as above, but returns val = default if the named property is not
specified in options. For example,

val = bvpget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also bvp4c, bvpinit, bvpset, deval

2-414

bvpinit

Purpose Form initial guess for bvp4c

Syntax solinit = bvpinit(x,yinit)
solinit = bvpinit(x,yinit,parameters)
solinit = bvpinit(sol,[anew bnew])
solinit = bvpinit(sol,[anew bnew],parameters)

Description solinit = bvpinit(x,yinit) forms the initial guess for the boundary
value problem solver bvp4c.

x is a vector that specifies an initial mesh. If you want to solve the
boundary value problem (BVP) on , then specify x(1) as and
x(end) as . The function bvp4c adapts this mesh to the solution, so a
guess like xb=nlinspace(a,b,10) often suffices. However, in difficult
cases, you should place mesh points where the solution changes rapidly.
The entries of x must be in

• Increasing order if

• Decreasing order if

For two-point boundary value problems, the entries of x must be
distinct. That is, if , the entries must satisfy x(1) < x(2) < ... <
x(end). If , the entries must satisfy x(1) > x(2) > ... > x(end)

For multipoint boundary value problem, you can specify the points in
at which the boundary conditions apply, other than the endpoints

a and b, by repeating their entries in x. For example, if you set

x = [0, 0.5, 1, 1, 1.5, 2];

the boundary conditions apply at three points: the endpoints 0 and
2, and the repeated entry 1. In general, repeated entries represent
boundary points between regions in . In the preceding example,
the repeated entry 1 divides the interval [0,2] into two regions: [0,1]
and [1,2].

yinit is a guess for the solution. It can be either a vector, or a function:

2-415

bvpinit

• Vector – For each component of the solution, bvpinit replicates
the corresponding element of the vector as a constant guess across
all mesh points. That is, yinit(i) is a constant guess for the ith
component yinit(i,:) of the solution at all the mesh points in x.

• Function – For a given mesh point, the guess function must return a
vector whose elements are guesses for the corresponding components
of the solution. The function must be of the form

y = guess(x)

where x is a mesh point and y is a vector whose length is the same as
the number of components in the solution. For example, if the guess
function is an M-file function, bvpinit calls

y(:,j) = guess(x(j))

at each mesh point.

For multipoint boundary value problems, the guess function must
be of the form

y = guess(x, k)

where y an initial guess for the solution at x in region k. The function
must accept the input argument k, which is provided for flexibility
in writing the guess function. However, the function is not required
to use k.

solinit = bvpinit(x,yinit,parameters) indicates that the
boundary value problem involves unknown parameters. Use the vector
parameters to provide a guess for all unknown parameters.

solinit is a structure with the following fields. The structure can have
any name, but the fields must be named x, y, and parameters.

2-416

bvpinit

x Ordered nodes of the initial mesh.

y Initial guess for the solution with solinit.y(:,i)
a guess for the solution at the node solinit.x(i).

parameters Optional. A vector that provides an initial guess
for unknown parameters.

solinit = bvpinit(sol,[anew bnew]) forms an initial guess on
the interval [anew bnew] from a solution sol on an interval .
The new interval must be larger than the previous one, so either
anew <=a <b <= bnew or anew >=a >b >= bnew. The solution sol is
extrapolated to the new interval. If sol contains parameters, they are
copied to solinit.

solinit = bvpinit(sol,[anew bnew],parameters) forms solinit
as described above, but uses parameters as a guess for unknown
parameters in solinit.

See Also @ (function_handle), bvp4c, bvpget, bvpset, bvpxtend, deval

2-417

bvpset

Purpose Create or alter options structure of boundary value problem

Syntax options = bvpset('name1',value1,'name2',value2,...)
options = bvpset(oldopts,'name1',value1,...)
options = bvpset(oldopts,newopts)
bvpset

Description options = bvpset('name1',value1,'name2',value2,...) creates a
structure options that you can supply to the boundary value problem
solver bvp4c, in which the named properties have the specified
values. Any unspecified properties retain their default values. For
all properties, it is sufficient to type only the leading characters that
uniquely identify the property. bvpset ignores case for property names.

options = bvpset(oldopts,'name1',value1,...) alters an existing
options structure oldopts. This overwrites any values in oldopts that
are specified using name/value pairs and returns the modified structure
as the output argument.

options = bvpset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any values
set in newopts overwrite the corresponding values in oldopts.

bvpset with no input arguments displays all property names and their
possible values, indicating defaults with braces {}.

You can use the function bvpget to query the options structure for the
value of a specific property.

BVP
Properties

bvpset enables you to specify properties for the boundary value problem
solver bvp4c. There are several categories of properties that you can set:

• “Error Tolerance Properties” on page 2-419

• “Vectorization” on page 2-420

• “Analytical Partial Derivatives” on page 2-421

• “Singular BVPs” on page 2-424

2-418

bvpset

• “Mesh Size Property” on page 2-424

• “Solution Statistic Property” on page 2-425

Error Tolerance Properties

Because bvp4c uses a collocation formula, the numerical solution
is based on a mesh of points at which the collocation equations are
satisfied. Mesh selection and error control are based on the residual of
this solution, such that the computed solution is the exact solution
of a perturbed problem . On each
subinterval of the mesh, a norm of the residual in the ith component
of the solution, res(i), is estimated and is required to be less than or
equal to a tolerance. This tolerance is a function of the relative and
absolute tolerances, RelTol and AbsTol, defined by the user.

The following table describes the error tolerance properties.

2-419

bvpset

BVP Error Tolerance Properties

Property Value Description

RelTol Positive
scalar
{1e-3}

A relative error tolerance that applies to all
components of the residual vector. It is a
measure of the residual relative to the size
of . The default, 1e-3, corresponds
to 0.1% accuracy.

The computed solution is the exact
solution of .
On each subinterval of the mesh, the
residual satisfies

AbsTol Positive
scalar or
vector
{1e-6}

Absolute error tolerances that apply to the
corresponding components of the residual
vector. AbsTol(i) is a threshold below which
the values of the corresponding components
are unimportant. If a scalar value is
specified, it applies to all components.

Vectorization

The following table describes the BVP vectorization property.
Vectorization of the ODE function used by bvp4c differs from the
vectorization used by the ODE solvers:

• For bvp4c, the ODE function must be vectorized with respect to the
first argument as well as the second one, so that F([x1 x2 ...],[y1
y2 ...]) returns [F(x1,y1) F(x2,y2)...].

• bvp4c benefits from vectorization even when analytical Jacobians
are provided. For stiff ODE solvers, vectorization is ignored when
analytical Jacobians are used.

2-420

bvpset

Vectorization Properties

Property Value Description

Vectorized on | {off} Set on to inform bvp4c that you have
coded the ODE function F so that
F([x1 x2 ...],[y1 y2 ...]) returns
[F(x1,y1) F(x2,y2) ...]. That
is, your ODE function can pass to
the solver a whole array of column
vectors at once. This enables the
solver to reduce the number of function
evaluations and may significantly
reduce solution time.

With the MATLAB array notation,
it is typically an easy matter to
vectorize an ODE function. In the
shockbvp example shown previously,
the shockODE function has been
vectorized using colon notation into
the subscripts and by using the array
multiplication (.*) operator.

function dydx = shockODE(x,y,e)
pix = pi*x;
dydx = [y(2,:)...
-x/e.*y(2,:)-pi^2*cos(pix)-
pix/e.*sin(pix)];

Analytical Partial Derivatives

By default, the bvp4c solver approximates all partial derivatives
with finite differences. bvp4c can be more efficient if you provide
analytical partial derivatives of the differential equations,

2-421

bvpset

and analytical partial derivatives, and , of the
boundary conditions. If the problem involves unknown parameters,
you must also provide partial derivatives, and , with
respect to the parameters.

The following table describes the analytical partial derivatives
properties.

2-422

bvpset

BVP Analytical Partial Derivative Properties

Property Value Description

FJacobian Function
handle

Handle to a function that computes
the analytical partial derivatives
of . When solving

, set this property
to @fjac if dfdy = fjac(x,y)

evaluates the Jacobian .
If the problem involves unknown
parameters , [dfdy,dfdp] =
fjac(x,y,p) must also return
the partial derivative . For
problems with constant partial
derivatives, set this property to
the value of dfdy or to a cell array
{dfdy,dfdp}.

See “Function Handles” in
the MATLAB Programming
documentation for more
information.

BCJacobian Function
handle

Handle to a function that
computes the analytical partial
derivatives of .
For boundary conditions

, set this property
to @bcjac if [dbcdya,dbcdyb]
= bcjac(ya,yb) evaluates the
partial derivatives ,
and . If the problem
involves unknown parameters

, [dbcdya,dbcdyb,dbcdp] =
bcjac(ya,yb,p) must also return
the partial derivative .
For problems with constant partial
derivatives, set this property to
a cell array {dbcdya,dbcdyb} or
{dbcdya,dbcdyb,dbcdp}.

2-423

bvpset

Singular BVPs

bvp4c can solve singular problems of the form

posed on the interval where . For such problems, specify the
constant matrix as the value of SingularTerm. For equations of this
form, odefun evaluates only the term, where represents
unknown parameters, if any.

Singular BVP Property

Property Value Description

SingularTerm Constant
matrix

Singular term of singular BVPs.
Set to the constant matrix for
equations of the form

posed on the interval
where .

Mesh Size Property

bvp4c solves a system of algebraic equations to determine the numerical
solution to a BVP at each of the mesh points. The size of the algebraic
system depends on the number of differential equations (n) and the
number of mesh points in the current mesh (N). When the allowed
number of mesh points is exhausted, the computation stops, bvp4c
displays a warning message and returns the solution it found so far.
This solution does not satisfy the error tolerance, but it may provide an

2-424

bvpset

excellent initial guess for computations restarted with relaxed error
tolerances or an increased value of NMax.

The following table describes the mesh size property.

BVP Mesh Size Property

Property Value Description

NMax positive integer
{floor(1000/n)}

Maximum number of mesh
points allowed when solving
the BVP, where n is the number
of differential equations in the
problem. The default value
of NMax limits the size of the
algebraic system to about 1000
equations. For systems of a
few differential equations, the
default value of NMax should be
sufficient to obtain an accurate
solution.

Solution Statistic Property

The Stats property lets you view solution statistics.

The following table describes the solution statistics property.

2-425

bvpset

BVP Solution Statistic Property

Property Value Description

Stats on | {off} Specifies whether statistics about
the computations are displayed.
If the stats property is on, after
solving the problem, bvp4c displays:

• The number of points in the mesh

• The maximum residual of the
solution

• The number of times it called
the differential equation function
odefun to evaluate

• The number of times it called
the boundary condition
function bcfun to evaluate

Example To create an options structure that changes the relative error tolerance
of bvp4c from the default value of 1e-3 to 1e-4, enter

options = bvpset('RelTol', 1e-4);

To recover the value of 'RelTol' from options, enter

bvpget(options, 'RelTol')

ans =

1.0000e-004

See Also @ (function_handle), bvp4c, bvpget, bvpinit, deval

2-426

bvpxtend

Purpose Form guess structure for extending boundary value solutions

Syntax solinit = bvpxtend(sol,xnew,ynew)
solinit = bvpxtend(sol,xnew,extrap)
solinit = bvpxtend(sol,xnew)
solinit = bvpxtend(sol,xnew,ynew,pnew)
solinit = bvpxtend(sol,xnew,extrap,pnew)

Description solinit = bvpxtend(sol,xnew,ynew) uses solution sol computed on
[a,b] to form a solution guess for the interval extended to xnew. The
extension point xnew must be outside the interval [a,b], but on either
side. The vector ynew provides an initial guess for the solution at xnew.

solinit = bvpxtend(sol,xnew,extrap) forms the guess at xnew by
extrapolating the solution sol. extrap is a string that determines the
extrapolation method. extrap has three possible values:

• 'constant' — ynew is a value nearer to end point of solution in sol.

• 'linear' — ynew is a value at xnew of linear interpolant to the value
and slope at the nearer end point of solution in sol.

• 'solution' — ynew is the value of (cubic) solution in sol at xnew.

The value of extrap is case-insensitive and only the leading, unique
portion needs to be specified.

solinit = bvpxtend(sol,xnew) uses the extrapolating solution where
extrap is 'constant'. If there are unknown parameters, values
present in sol are used as the initial guess for parameters in solinit.

solinit = bvpxtend(sol,xnew,ynew,pnew) specifies a different guess
pnew. pnew can be used with extrapolation, using the syntax solinit
= bvpxtend(sol,xnew,extrap,pnew). To modify parameters without
changing the interval, use [] as place holder for xnew and ynew.

See Also bvp4c, bvpinit

2-427

calendar

Purpose Calendar for specified month

Syntax c = calendar
c = calendar(d)
c = calendar(y, m)

Description c = calendar returns a 6-by-7 matrix containing a calendar for the
current month. The calendar runs Sunday (first column) to Saturday.

c = calendar(d), where d is a serial date number or a date string,
returns a calendar for the specified month.

c = calendar(y, m), where y and m are integers, returns a calendar
for the specified month of the specified year.

Examples The command

calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

Oct 1957
S M Tu W Th F S
0 0 1 2 3 4 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 0 0
0 0 0 0 0 0 0

See Also datenum

2-428

calllib

Purpose Call function in external library

Syntax [x1, ..., xN] = calllib('libname', 'funcname', arg1, ...,
argN)

Description [x1, ..., xN] = calllib('libname', 'funcname', arg1, ...,
argN) calls the function funcname in library libname, passing input
arguments arg1 through argN. calllib returns output values obtained
from function funcname in x1 through XN.

If you used an alias when initially loading the library, then you must
use that alias for the libname argument.

Ways to Call calllib

The following examples show ways calls to calllib. By using
libfunctionsview, you determined that the addStructByRef function
in the shared library shrlibsample requires a pointer to a c_struct
data type as its argument.

Load the library:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

Create a MATLAB structure and use libstruct to create a C structure
of the proper type (c_struct here):

struct.p1 = 4; struct.p2 = 7.3; struct.p3 = -290;
[res,st] = calllib('shrlibsample','addStructByRef',...
libstruct('c_struct',struct));

Let MATLAB convert struct to the proper type of C structure:

[res,st] = calllib('shrlibsample','addStructByRef',struct);

Pass an empty array to libstruct and assign the values from your
C function:

[res,st] = calllib('shrlibsample','addStructByRef',...

2-429

calllib

libstruct('c_struct',[]);

Let MATLAB create the proper type of structure and assign values
from your C function:

[res,st] = calllib('shrlibsample','addStructByRef',[]);

Examples This example calls functions from the libmx library to test the value
stored in y:

hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx', hfile)

y = rand(4, 7, 2);

calllib('libmx', 'mxGetNumberOfElements', y)
ans =

56

calllib('libmx', 'mxGetClassID', y)
ans =

mxDOUBLE_CLASS

unloadlibrary libmx

See Also loadlibrary, libfunctions, libfunctionsview, libpointer,
libstruct, libisloaded, unloadlibrary

See Passing Arguments for information on defining the correct data
types for library function arguments.

2-430

callSoapService

Purpose Send SOAP message off to endpoint

Syntax callSoapService(endpoint, soapAction, message)

Description callSoapService(endpoint, soapAction, message) sends message,
a Java document object model (DOM), to the soapAction service at
the endpoint.

Example message = createSoapMessage(...
'urn:xmethods-delayed-quotes','getQuote',{'GOOG'},{'symbol'},...
{'{http://www.w3.org/2001/XMLSchema}string'},'rpc')
response = callSoapService('http://64.124.140.30:9090/soap',...
'urn:xmethods-delayed-quotes#getQuote',message)
price = parseSoapResponse(response)

See Also createClassFromWsdl, CreateSoapMessage, parseSoapResponse

2-431

camdolly

Purpose Move camera position and target

Syntax camdolly(dx,dy,dz)
camdolly(dx,dy,dz,'targetmode')
camdolly(dx,dy,dz,'targetmode','coordsys')
camdolly(axes_handle,...)

Description camdolly moves the camera position and the camera target by the
specified amounts.

camdolly(dx,dy,dz) moves the camera position and the camera target
by the specified amounts (see Coordinate Systems).

camdolly(dx,dy,dz,'targetmode') The targetmode argument can
take on two values that determine how MATLAB moves the camera:

• movetarget (default) — Move both the camera and the target.

• fixtarget — Move only the camera.

camdolly(dx,dy,dz,'targetmode','coordsys') The coordsys
argument can take on three values that determine how MATLAB
interprets dx, dy, and dz:

Coordinate Systems

• camera (default) — Move in the camera’s coordinate system. dx
moves left/right, dy moves down/up, and dz moves along the viewing
axis. The units are normalized to the scene.

For example, setting dx to 1 moves the camera to the right, which
pushes the scene to the left edge of the box formed by the axes
position rectangle. A negative value moves the scene in the other
direction. Setting dz to 0.5 moves the camera to a position halfway
between the camera position and the camera target.

• pixels — Interpret dx and dy as pixel offsets. dz is ignored.

• data — Interpret dx, dy, and dz as offsets in axes data coordinates.

2-432

camdolly

camdolly(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camdolly operates on the current axes.

Remarks camdolly sets the axes CameraPosition andCameraTarget properties,
which in turn causes the CameraPositionMode and CameraTargetMode
properties to be set to manual.

Examples This example moves the camera along the x- and y-axes in a series of
steps.

surf(peaks)
axis vis3d
t = 0:pi/20:2*pi;
dx = sin(t)./40;
dy = cos(t)./40;
for i = 1:length(t);

camdolly(dx(i),dy(i),0)
drawnow

end

See Also axes, campos, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-98 for related functions

See “Defining Scenes with Camera Graphics” for more information on
camera properties.

2-433

cameratoolbar

Purpose Control camera toolbar programmatically

Syntax cameratoolbar
cameratoolbar('NoReset')
cameratoolbar('SetMode',mode)
cameratoolbar('SetCoordSys',coordsys)
cameratoolbar('Show')
cameratoolbar('Hide')
cameratoolbar('Toggle')
cameratoolbar('ResetCameraAndSceneLight')
cameratoolbar('ResetCamera')
cameratoolbar('ResetSceneLight')
cameratoolbar('ResetTarget')
mode = cameratoolbar('GetMode')
paxis = cameratoolbar('GetCoordsys')
vis = cameratoolbar('GetVisible')
cameratoolbar(fig,...)
h = cameratoolbar
cameratoolbar('Close')

Description cameratoolbar creates a new toolbar that enables interactive
manipulation of the axes camera and light when users drag the mouse
on the figure window. Several axes camera properties are set when
the toolbar is initialized.

cameratoolbar('NoReset') creates the toolbar without setting any
camera properties.

cameratoolbar('SetMode',mode) sets the toolbar mode (depressed
button). mode can be 'orbit', 'orbitscenelight', 'pan', 'dollyhv',
'dollyfb', 'zoom', 'roll', 'nomode'.

cameratoolbar('SetCoordSys',coordsys) sets the principal axis of
the camera motion. coordsys can be: 'x', 'y', 'z', 'none'.

cameratoolbar('Show') shows the toolbar on the current figure.

cameratoolbar('Hide') hides the toolbar on the current figure.

cameratoolbar('Toggle') toggles the visibility of the toolbar.

2-434

cameratoolbar

cameratoolbar('ResetCameraAndSceneLight') resets the current
camera and scenelight.

cameratoolbar('ResetCamera') resets the current camera.

cameratoolbar('ResetSceneLight') resets the current scenelight.

cameratoolbar('ResetTarget') resets the current camera target.

mode = cameratoolbar('GetMode') returns the current mode.

paxis = cameratoolbar('GetCoordsys') returns the current
principal axis.

vis = cameratoolbar('GetVisible') returns the visibility of the
toolbar (1 if visible, 0 if not visible).

cameratoolbar(fig,...) specifies the figure to operate on by passing
the figure handle as the first argument.

h = cameratoolbar returns the handle to the toolbar.

cameratoolbar('Close') removes the toolbar from the current figure.

Note that, in general, the use of OpenGL hardware improves rendering
performance.

See Also rotate3d, zoom

2-435

camlight

Purpose Create or move light object in camera coordinates

Syntax camlight('headlight')
camlight('right')
camlight('left')
camlight
camlight(az,el)
camlight(...,'style')
camlight(light_handle,...)
light_handle = camlight(...)

Description camlight('headlight') creates a light at the camera position.

camlight('right') creates a light right and up from camera.

camlight('left') creates a light left and up from camera.

camlight with no arguments is the same as camlight('right').

camlight(az,el) creates a light at the specified azimuth (az) and
elevation (el) with respect to the camera position. The camera target is
the center of rotation and az and el are in degrees.

camlight(...,'style') The style argument can take on two values:

• local (default) — The light is a point source that radiates from the
location in all directions.

• infinite — The light shines in parallel rays.

camlight(light_handle,...) uses the light specified in
light_handle.

light_handle = camlight(...) returns the light’s handle.

Remarks camlight sets the light object Position and Style properties. A light
created with camlight will not track the camera. In order for the light
to stay in a constant position relative to the camera, you must call
camlight whenever you move the camera.

2-436

camlight

Examples This example creates a light positioned to the left of the camera and
then repositions the light each time the camera is moved:

surf(peaks)
axis vis3d
h = camlight('left');
for i = 1:20;
camorbit(10,0)
camlight(h,'left')
drawnow;

end

See Also light, lightangle

“Lighting” on page 1-100 for related functions

“Lighting as a Visualization Tool” for more information on using lights

2-437

camlookat

Purpose Position camera to view object or group of objects

Syntax camlookat(object_handles)
camlookat(axes_handle)
camlookat

Description camlookat(object_handles) views the objects identified in the vector
object_handles. The vector can contain the handles of axes children.

camlookat(axes_handle) views the objects that are children of the
axes identified by axes_handle.

camlookat views the objects that are in the current axes.

Remarks camlookat moves the camera position and camera target while
preserving the relative view direction and camera view angle. The
object (or objects) being viewed roughly fill the axes position rectangle.

camlookat sets the axes CameraPosition and CameraTarget properties.

Examples This example creates three spheres at different locations and then
progressively positions the camera so that each sphere is the object
around which the scene is composed:

[x y z] = sphere;
s1 = surf(x,y,z);
hold on
s2 = surf(x+3,y,z+3);
s3 = surf(x,y,z+6);
daspect([1 1 1])
view(30,10)
camproj perspective
camlookat(gca) % Compose the scene around the current axes
pause(2)
camlookat(s1) % Compose the scene around sphere s1
pause(2)
camlookat(s2) % Compose the scene around sphere s2
pause(2)

2-438

camlookat

camlookat(s3) % Compose the scene around sphere s3
pause(2)
camlookat(gca)

See Also campos, camtarget

“Controlling the Camera Viewpoint” on page 1-98 for related functions

“Defining Scenes with Camera Graphics” for more information

2-439

camorbit

Purpose Rotate camera position around camera target

Syntax camorbit(dtheta,dphi)
camorbit(dtheta,dphi,'coordsys')
camorbit(dtheta,dphi,'coordsys','direction')
camorbit(axes_handle,...)

Description camorbit(dtheta,dphi) rotates the camera position around the camera
target by the amounts specified in dtheta and dphi (both in degrees).
dtheta is the horizontal rotation and dphi is the vertical rotation.

camorbit(dtheta,dphi,'coordsys') The coordsys argument
determines the center of rotation. It can take on two values:

• data (default) — Rotate the camera around an axis defined by the
camera target and the direction (default is the positive z direction).

• camera — Rotate the camera about the point defined by the camera
target.

camorbit(dtheta,dphi,'coordsys','direction') The direction
argument, in conjunction with the camera target, defines the axis
of rotation for the data coordinate system. Specify direction as a
three-element vector containing the x, y, and z components of the
direction or one of the characters, x, y, or z, to indicate [1 0 0], [0 1
0], or [0 0 1] respectively.

camorbit(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camorbit operates on the current axes.

Examples Compare rotation in the two coordinate systems with these for loops.
The first rotates the camera horizontally about a line defined by the
camera target point and a direction that is parallel to the y-axis.
Visualize this rotation as a cone formed with the camera target at the
apex and the camera position forming the base:

surf(peaks)

2-440

camorbit

axis vis3d
for i=1:36
camorbit(10,0,'data',[0 1 0])
drawnow

end

Rotation in the camera coordinate system orbits the camera around the
axes along a circle while keeping the center of a circle at the camera
target.

surf(peaks)
axis vis3d
for i=1:36
camorbit(10,0,'camera')
drawnow

end

See Also axes, axis('vis3d'), camdolly, campan, camzoom, camroll

“Controlling the Camera Viewpoint” on page 1-98 for related functions

“Defining Scenes with Camera Graphics” for more information

2-441

campan

Purpose Rotate camera target around camera position

Syntax campan(dtheta,dphi)
campan(dtheta,dphi,'coordsys')
campan(dtheta,dphi,'coordsys','direction')
campan(axes_handle,...)

Description campan(dtheta,dphi) rotates the camera target around the camera
position by the amounts specified in dtheta and dphi (both in degrees).
dtheta is the horizontal rotation and dphi is the vertical rotation.

campan(dtheta,dphi,'coordsys') The coordsys argument
determines the center of rotation. It can take on two values:

• data (default) — Rotate the camera target around an axis defined
by the camera position and the direction (default is the positive
z direction)

• camera — Rotate the camera about the point defined by the camera
target.

campan(dtheta,dphi,'coordsys','direction') The direction
argument, in conjunction with the camera position, defines the axis
of rotation for the data coordinate system. Specify direction as a
three-element vector containing the x, y, and z components of the
direction or one of the characters, x, y, or z, to indicate [1 0 0], [0 1
0], or [0 0 1] respectively.

campan(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle,
campan operates on the current axes.

See Also axes, camdolly, camorbit, camtarget, camzoom, camroll

“Controlling the Camera Viewpoint” on page 1-98 for related functions

“Defining Scenes with Camera Graphics” for more information

2-442

campos

Purpose Set or query camera position

Syntax campos
campos([camera_position])
campos('mode')
campos('auto')
campos('manual')
campos(axes_handle,...)

Description campos with no arguments returns the camera position in the current
axes.

campos([camera_position]) sets the position of the camera in
the current axes to the specified value. Specify the position as a
three-element vector containing the x-, y-, and z-coordinates of the
desired location in the data units of the axes.

campos('mode') returns the value of the camera position mode, which
can be either auto (the default) or manual.

campos('auto') sets the camera position mode to auto.

campos('manual') sets the camera position mode to manual.

campos(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, campos operates on the current axes.

Remarks campos sets or queries values of the axes CameraPosition and
CameraPositionMode properties. The camera position is the point in the
Cartesian coordinate system of the axes from which you view the scene.

Examples This example moves the camera along the x-axis in a series of steps:

surf(peaks)
axis vis3d off
for x = -200:5:200

campos([x,5,10])
drawnow

2-443

campos

end

See Also axis, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-98 for related functions

“Defining Scenes with Camera Graphics” for more information

2-444

camproj

Purpose Set or query projection type

Syntax camproj
camproj('projection_type')
camproj(axes_handle,...)

Description The projection type determines whether MATLAB uses a perspective or
orthographic projection for 3-D views.

camproj with no arguments returns the projection type setting in the
current axes.

camproj('projection_type') sets the projection type in the current
axes to the specified value. Possible values for projection_type are
orthographic and perspective.

camproj(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camproj operates on the current axes.

Remarks camproj sets or queries values of the axes object Projection property.

See Also campos, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-98 for related functions

“Defining Scenes with Camera Graphics” for more information

2-445

camroll

Purpose Rotate camera about view axis

Syntax camroll(dtheta)
camroll(axes_handle,dtheta)

Description camroll(dtheta) rotates the camera around the camera viewing axis
by the amounts specified in dtheta (in degrees). The viewing axis is
defined by the line passing through the camera position and the camera
target.

camroll(axes_handle,dtheta) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camroll operates on the current axes.

Remarks camroll sets the axes CameraUpVector property and thereby also sets
the CameraUpVectorMode property to manual.

See Also axes, axis('vis3d'), camdolly, camorbit, camzoom, campan

“Controlling the Camera Viewpoint” on page 1-98 for related functions

“Defining Scenes with Camera Graphics” for more information

2-446

camtarget

Purpose Set or query location of camera target

Syntax camtarget
camtarget([camera_target])
camtarget('mode')
camtarget('auto')
camtarget('manual')
camtarget(axes_handle,...)

Description The camera target is the location in the axes that the camera points to.
The camera remains oriented toward this point regardless of its position.

camtarget with no arguments returns the location of the camera target
in the current axes.

camtarget([camera_target]) sets the camera target in the current axes
to the specified value. Specify the target as a three-element vector
containing the x-, y-, and z-coordinates of the desired location in the
data units of the axes.

camtarget('mode') returns the value of the camera target mode, which
can be either auto (the default) or manual.

camtarget('auto') sets the camera target mode to auto.

camtarget('manual') sets the camera target mode to manual.

camtarget(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camtarget operates on the current axes.

Remarks camtarget sets or queries values of the axes object CameraTarget and
CameraTargetMode properties.

When the camera target mode is auto, MATLAB positions the camera
target at the center of the axes plot box.

Examples This example moves the camera position and the camera target along
the x-axis in a series of steps:

2-447

camtarget

surf(peaks);
axis vis3d
xp = linspace(-150,40,50);
xt = linspace(25,50,50);
for i=1:50

campos([xp(i),25,5]);
camtarget([xt(i),30,0])
drawnow

end

See Also axis, camproj, campos, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-98 for related functions

“Defining Scenes with Camera Graphics” for more information

2-448

camup

Purpose Set or query camera up vector

Syntax camup
camup([up_vector])
camup('mode')
camup('auto')
camup('manual')
camup(axes_handle,...)

Description The camera up vector specifies the direction that is oriented up in the
scene.

camup with no arguments returns the camera up vector setting in the
current axes.

camup([up_vector]) sets the up vector in the current axes to the
specified value. Specify the up vector as x, y, and z components. See
Remarks.

camup('mode') returns the current value of the camera up vector mode,
which can be either auto (the default) or manual.

camup('auto') sets the camera up vector mode to auto. In auto mode,
MATLAB uses a value for the up vector of [0 1 0] for 2-D views. This
means the z-axis points up.

camup('manual') sets the camera up vector mode to manual. In manual
mode, MATLAB does not change the value of the camera up vector.

camup(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camup operates on the current axes.

Remarks camup sets or queries values of the axes object CameraUpVector and
CameraUpVectorMode properties.

Specify the camera up vector as the x-, y-, and z-coordinates of a point
in the axes coordinate system that forms the directed line segment
PQ, where P is the point (0,0,0) and Q is the specified x-, y-, and
z-coordinates. This line always points up. The length of the line PQ has

2-449

camup

no effect on the orientation of the scene. This means a value of [0 0 1]
produces the same results as [0 0 25].

See Also axis, camproj, campos, camtarget, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-98 for related functions

“Defining Scenes with Camera Graphics” for more information

2-450

camva

Purpose Set or query camera view angle

Syntax camva
camva(view_angle)
camva('mode')
camva('auto')
camva('manual')
camva(axes_handle,...)

Description The camera view angle determines the field of view of the camera.
Larger angles produce a smaller view of the scene. You can implement
zooming by changing the camera view angle.

camva with no arguments returns the camera view angle setting in
the current axes.

camva(view_angle) sets the view angle in the current axes to the
specified value. Specify the view angle in degrees.

camva('mode') returns the current value of the camera view angle
mode, which can be either auto (the default) or manual. See Remarks.

camva('auto') sets the camera view angle mode to auto.

camva('manual') sets the camera view angle mode to manual. See
Remarks.

camva(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camva operates on the current axes.

Remarks camva sets or queries values of the axes object CameraViewAngle and
CameraViewAngleMode properties.

When the camera view angle mode is auto, MATLAB adjusts the
camera view angle so that the scene fills the available space in the
window. If you move the camera to a different position, MATLAB
changes the camera view angle to maintain a view of the scene that fills
the available area in the window.

2-451

camva

Setting a camera view angle or setting the camera view angle to manual
disables the MATLAB stretch-to-fill feature (stretching of the axes
to fit the window). This means setting the camera view angle to its
current value,

camva(camva)

can cause a change in the way the graph looks. See the Remarks section
of the axes reference page for more information.

Examples This example creates two pushbuttons, one that zooms in and another
that zooms out.

uicontrol('Style','pushbutton',...
'String','Zoom In',...
'Position',[20 20 60 20],...
'Callback','if camva <= 1;return;else;camva(camva-1);end');

uicontrol('Style','pushbutton',...
'String','Zoom Out',...
'Position',[100 20 60 20],...
'Callback','if camva >= 179;return;else;camva(camva+1);end');

Now create a graph to zoom in and out on:

surf(peaks);

Note the range checking in the callback statements. This keeps the
values for the camera view angle in the range greater than zero and
less than 180.

See Also axis, camproj, campos, camup, camtarget

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-98 for related functions

“Defining Scenes with Camera Graphics” for more information

2-452

camzoom

Purpose Zoom in and out on scene

Syntax camzoom(zoom_factor)
camzoom(axes_handle,...)

Description camzoom(zoom_factor) zooms in or out on the scene depending on the
value specified by zoom_factor. If zoom_factor is greater than 1, the
scene appears larger; if zoom_factor is greater than zero and less than
1, the scene appears smaller.

camzoom(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camzoom operates on the current axes.

Remarks camzoom sets the axes CameraViewAngle property, which in turn
causes the CameraViewAngleMode property to be set to manual. Note
that setting the CameraViewAngle property disables the MATLAB
stretch-to-fill feature (stretching of the axes to fit the window). This
may result in a change to the aspect ratio of your graph. See the axes
function for more information on this behavior.

See Also axes, camdolly, camorbit, campan, camroll, camva

“Controlling the Camera Viewpoint” on page 1-98 for related functions

“Defining Scenes with Camera Graphics” for more information

2-453

cart2pol

Purpose Transform Cartesian coordinates to polar or cylindrical

Syntax [THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

Description [THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional
Cartesian coordinates stored in corresponding elements of arrays X, Y,
and Z, into cylindrical coordinates. THETA is a counterclockwise angular
displacement in radians from the positive x-axis, RHO is the distance
from the origin to a point in the x-y plane, and Z is the height above the
x-y plane. Arrays X, Y, and Z must be the same size (or any can be scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into
polar coordinates.

Algorithm The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to
cylindrical coordinates is

See Also cart2sph, pol2cart, sph2cart

2-454

cart2sph

Purpose Transform Cartesian coordinates to spherical

Syntax [THETA,PHI,R] = cart2sph(X,Y,Z)

Description [THETA,PHI,R] = cart2sph(X,Y,Z) transforms Cartesian coordinates
stored in corresponding elements of arrays X, Y, and Z into spherical
coordinates. Azimuth THETA and elevation PHI are angular
displacements in radians measured from the positive x-axis, and the x-y
plane, respectively; and R is the distance from the origin to a point.

Arrays X, Y, and Z must be the same size.

Algorithm The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is

The notation for spherical coordinates is not standard. For the cart2sph
function, the angle PHI is measured from the x-y plane. Notice that if
PHI = 0 then the point is in the x-y plane and if PHI = pi/2 then the
point is on the positive z-axis.

See Also cart2pol, pol2cart, sph2cart

2-455

case

Purpose Execute block of code if condition is true

Syntax switch switch_expr
case case_expr

statement, ..., statement
case {case_expr1, case_expr2, case_expr3, ...}

statement, ..., statement
otherwise

statement, ..., statement
end

Description case is part of the switch statement syntax which allows for conditional
execution. A particular case consists of the case statement itself
followed by a case expression and one or more statements.

case case_expr compares the value of the expression switch_expr
declared in the preceding switch statement with one or more values
in case_expr, and executes the block of code that follows if any of the
comparisons yield a true result.

You typically use multiple case statements in the evaluation of a single
switch statement. The block of code associated with a particular case
statement is executed only if its associated case expression (case_expr)
is the first to match the switch expression (switch_expr).

To enter more than one case expression in a switch statement, put the
expressions in a cell array, as shown above.

Examples To execute a certain block of code based on what the string, method,
is set to,

method = 'Bilinear';

switch lower(method)
case {'linear','bilinear'}

disp('Method is linear')
case 'cubic'

2-456

case

disp('Method is cubic')
case 'nearest'

disp('Method is nearest')
otherwise

disp('Unknown method.')
end

Method is linear

See Also switch, otherwise, end, if, else, elseif, while

2-457

cast

Purpose Cast variable to different data type

Syntax B = cast(A, newclass)

Description B = cast(A, newclass) casts A to class newclass. A must be
convertible to class newclass. newclass must be the name of one of the
built in data types.

Examples a = int8(5);
b = cast(a,'uint8');
class(b)

ans =

uint8

See Also class

2-458

cat

Purpose Concatenate arrays along specified dimension

Syntax C = cat(dim, A, B)
C = cat(dim, A1, A2, A3, A4, ...)

Description C = cat(dim, A, B)concatenates the arrays A and B along dim.

C = cat(dim, A1, A2, A3, A4, ...)concatenates all the input
arrays (A1, A2, A3, A4, and so on) along dim.

cat(2, A, B) is the same as [A, B], and cat(1, A, B) is the same
as [A; B].

Remarks When used with comma-separated list syntax, cat(dim, C{:}) or
cat(dim, C.field) is a convenient way to concatenate a cell or
structure array containing numeric matrices into a single matrix.

Examples Given

A = B =
1 2 5 6
3 4 7 8

concatenating along different dimensions produces

The commands

2-459

cat

A = magic(3); B = pascal(3);
C = cat(4, A, B);

produce a 3-by-3-by-1-by-2 array.

See Also num2cell

The special character []

2-460

catch

Purpose Specify how to respond to error in try statement

Description The general form of a try statement is
try,
statement,
...,
statement,
catch,
statement,
...,
statement,

end

Normally, only the statements between the try and catch are executed.
However, if an error occurs during execution of any of the statements,
the error is captured into lasterror, and the statements between
the catch and end are executed. If an error occurs within the catch
statements, execution stops unless caught by another try...catch block.
The error string produced by a failed try block can be obtained with
lasterror.

See Also try, rethrow, end, lasterror, eval, evalin

2-461

caxis

Purpose Color axis scaling

Syntax caxis([cmin cmax])
caxis auto
caxis manual
caxis(caxis) freeze
v = caxis
caxis(axes_handle,...)

Description caxis controls the mapping of data values to the colormap. It affects any
surfaces, patches, and images with indexed CData and CDataMapping
set to scaled. It does not affect surfaces, patches, or images with true
color CData or with CDataMapping set to direct.

caxis([cmin cmax]) sets the color limits to specified minimum and
maximum values. Data values less than cmin or greater than cmax map
to cmin and cmax, respectively. Values between cmin and cmax linearly
map to the current colormap.

caxis auto lets MATLAB compute the color limits automatically using
the minimum and maximum data values. This is the default behavior.
Color values set to Inf map to the maximum color, and values set to
-Inf map to the minimum color. Faces or edges with color values set to
NaN are not drawn.

caxis manual and caxis(caxis) freeze the color axis scaling at the
current limits. This enables subsequent plots to use the same limits
when hold is on.

v = caxis returns a two-element row vector containing the [cmin
cmax] currently in use.

caxis(axes_handle,...) uses the axes specified by axes_handle
instead of the current axes.

Remarks caxis changes the CLim and CLimMode properties of axes graphics
objects.

2-462

caxis

How Color Axis Scaling Works

Surface, patch, and image graphics objects having indexed CData and
CDataMapping set to scaled map CData values to colors in the figure
colormap each time they render. CData values equal to or less than cmin
map to the first color value in the colormap, and CData values equal to or
greater than cmax map to the last color value in the colormap. MATLAB
performs the following linear transformation on the intermediate values
(referred to as C below) to map them to an entry in the colormap (whose
length is m, and whose row index is referred to as index below).

index = fix((C-cmin)/(cmax-cmin)*m)+1

Examples Create (X,Y,Z) data for a sphere and view the data as a surface.

[X,Y,Z] = sphere;
C = Z;
surf(X,Y,Z,C)

Values of C have the range [-1 1]. Values of C near -1 are assigned
the lowest values in the colormap; values of C near 1 are assigned the
highest values in the colormap.

To map the top half of the surface to the highest value in the color table,
use

caxis([-1 0])

To use only the bottom half of the color table, enter

caxis([-1 3])

which maps the lowest CData values to the bottom of the colormap, and
the highest values to the middle of the colormap (by specifying a cmax
whose value is equal to cmin plus twice the range of the CData).

The command

caxis auto

2-463

caxis

resets axis scaling back to autoranging and you see all the colors in
the surface. In this case, entering

caxis

returns

[-1 1]

Adjusting the color axis can be useful when using images with scaled
color data. For example, load the image data and colormap for Cape
Cod, Massachusetts.

load cape

This command loads the image’s data X and the image’s colormap map
into the workspace. Now display the image with CDataMapping set to
scaled and install the image’s colormap.

image(X,'CDataMapping','scaled')colormap(map)

MATLAB sets the color limits to span the range of the image data,
which is 1 to 192:

caxis
ans =

1 192

The blue color of the ocean is the first color in the colormap and is
mapped to the lowest data value (1). You can effectively move sea level
by changing the lower color limit value. For example,

2-464

caxis

See Also axes, axis, colormap, get, mesh, pcolor, set, surf

The CLim and CLimMode properties of axes graphics objects

The Colormap property of figure graphics objects

“Color Operations” on page 1-97 for related functions

2-465

caxis

“Axes Color Limits — the CLim Property” for more examples

2-466

cd

Purpose Change working directory

Graphical
Interface

As an alternative to the cd function, use the current directory field

in the MATLAB desktop toolbar.

Syntax cd
w = cd
cd('directory')
cd('..')
cd directory

Description cd displays the current working directory.

w = cd assigns the current working directory to w.

cd('directory') sets the current working directory to directory. Use
the full pathname for directory. On UNIX platforms, the character ~
is interpreted as the user’s root directory.

cd('..') changes the current working directory to the directory above
it.

cd directory or cd .. is the unquoted form of the syntax.

Examples On UNIX

cd('/usr/local/matlab/toolbox/control/ctrldemos')

changes the current working directory to ctrldemos for the Control
System Toolbox.

On Windows

cd('c:/matlab/toolbox/control/ctrldemos')

changes the current working directory to ctrldemos for the Control
System Toolbox. Then typing

2-467

cd

cd ..

changes the current working directory to control, and typing

cd ..

again, changes the current working directory to toolbox.

On any platform, use cd with the matlabroot function to change to a
directory relative to the directory in which MATLAB is installed. For
example

cd([matlabroot '/toolbox/control/ctrldemos'])

changes the current working directory to ctrldemos for the Control
System Toolbox.

See Also dir, fileparts, mfilename, path, pwd, what

2-468

cd (ftp)

Purpose Change current directory on FTP server

Syntax cd(f)
cd(f,'dirname')
cd(f,'..')

Description cd(f) Displays the current directory on the FTP server f, where f was
created using ftp.

cd(f,'dirname') Changes the current directory on the FTP server
f to dirname, where f was created using ftp. After running cd, the
object f remembers the current directory on the FTP server. You can
then perform file operations functions relative to f using the methods
delete, dir, mget, mkdir, mput, rename, and rmdir.

cd(f,'..') changes the current directory on the FTP server f to the
directory above the current one.

Examples Connect to the MathWorks FTP server.

tmw=ftp('ftp.mathworks.com');

View the contents.

dir(tmw)

Change the current directory to pub.

cd(tmw,'pub');

View the contents of pub.

dir(tmw)

See Also dir (ftp), ftp

2-469

cdf2rdf

Purpose Convert complex diagonal form to real block diagonal form

Syntax [V,D] = cdf2rdf(V,D)
[V,D] = cdf2rdf(V,D)

Description If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing
in complex-conjugate pairs, cdf2rdf transforms the system so D is in
real diagonal form, with 2-by-2 real blocks along the diagonal replacing
the complex pairs originally there. The eigenvectors are transformed
so that

X = V*D/V

continues to hold. The individual columns of V are no longer
eigenvectors, but each pair of vectors associated with a 2-by-2 block in
D spans the corresponding invariant vectors.

Examples The matrix

X =
1 2 3
0 4 5
0 -5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =

1.0000 -0.0191 - 0.4002i -0.0191 + 0.4002i
0 0 - 0.6479i 0 + 0.6479i
0 0.6479 0.6479

D =

1.0000 0 0

2-470

cdf2rdf

0 4.0000 + 5.0000i 0
0 0 4.0000 - 5.0000i

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

V =

1.0000 -0.0191 -0.4002
0 0 -0.6479
0 0.6479 0

D =

1.0000 0 0
0 4.0000 5.0000
0 -5.0000 4.0000

Algorithm The real diagonal form for the eigenvalues is obtained from the complex
form using a specially constructed similarity transformation.

See Also eig, rsf2csf

2-471

cdfepoch

Purpose Construct cdfepoch object for Common Data Format (CDF) export

Syntax E = cdfepoch(date)

Description E = cdfepoch(date) constructs a cdfepoch object, where date is a
valid string (datestr), a number (datenum) representing a date, or a
cdfepoch object.

When writing data to a CDF using cdfwrite, use cdfepoch to convert
MATLAB formatted dates to CDF formatted dates. The MATLAB
cdfepoch object simulates the CDFEPOCH data type in CDF files.

Use the todatenum function to convert a cdfepoch object into a
MATLAB serial date number.

Note A CDF epoch is the number of milliseconds since 1-Jan-0000.
MATLAB datenums are the number of days since 0-Jan-0000.

See Also cdfinfo, cdfread, cdfwrite, datenum

2-472

cdfinfo

Purpose Information about Common Data Format (CDF) file

Syntax info = cdfinfo(filename)

Description info = cdfinfo(filename) returns information about the Common
Data Format (CDF) file specified in the string filename.

Note Because cdfinfo creates temporary files, the current working
directory must be writeable.

The return value, info, is a structure that contains the fields listed
alphabetically in the following table.

Field Description

FileModDate Text string indicating the date the file was
last modified

Filename Text string specifying the name of the file

FileSettings Structure array containing library settings
used to create the file

FileSize Double scalar specifying the size of the file,
in bytes

Format Text string specifying the file format

FormatVersion Text string specifying the version of the CDF
library used to create the file

GlobalAttributes Structure array that contains one field for
each global attribute. The name of each field
corresponds to the name of an attribute. The
data in each field, contained in a cell array,
represents the entry values for that attribute.

2-473

cdfinfo

Field Description

Subfiles Filenames containing the CDF file’s data, if
it is a multifile CDF

VariableAttributes Structure array that contains one field for
each variable attribute. The name of each
field corresponds to the name of an attribute.
The data in each field is contained in a n-by-2
cell array, where n is the number of variables.
The first column of this cell array contains the
variable names associated with the entries.
The second column contains the entry values.

2-474

cdfinfo

Field Description

N-by-6 cell array, where N is the number of
variables, containing information about the
variables in the file. The columns present the
following information:

Column
1

Text string specifying name of
variable

Column
2

Double array specifying the
dimensions of the variable, as
returned by the size function

Column
3

Double scalar specifying the
number of records assigned for the
variable

Column
4

Text string specifying the data type
of the variable, as stored in the
CDF file

Column
5

Text string specifying the record
and dimension variance settings
for the variable. The single
T or F to the left of the slash
designates whether values vary
by record. The zero or more T or
F letters to the right of the slash
designate whether values vary at
each dimension. Here are some
examples.

T/ (scalar variable

F/T (one-dimensional variable)

T/TFF (three-dimensional variable)

Variables

Column
6

Text string specifying the sparsity
of the variable’s records, with these
possible values:

'Full' 'Sparse (padded)'
'Sparse (nearest)'

2-475

cdfinfo

Note Attribute names returned by cdfinfo might not match the
names of the attributes in the CDF file exactly. Attribute names can
contain characters that are illegal in MATLAB field names. cdfinfo
removes illegal characters that appear at the beginning of attributes
and replaces other illegal characters with underscores (’_’). When
cdfinfo modifies an attribute name, it appends the attribute’s internal
number to the end of the field name. For example, the attribute name
Variable%Attribute becomes Variable_Attribute_013.

Examples info = cdfinfo('example.cdf')
info =

Filename: 'example.cdf'
FileModDate: '09-Mar-2001 15:45:22'

FileSize: 1240
Format: 'CDF'

FormatVersion: '2.7.0'
FileSettings: [1x1 struct]

Subfiles: {}
Variables: {5x6 cell}

GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

info.Variables
ans =

'Time' [1x2 double] [24] 'epoch' 'T/' 'Full'
'Longitude' [1x2 double] [1] 'int8' 'F/FT' 'Full'
'Latitude' [1x2 double] [1] 'int8' 'F/TF' 'Full'
'Data' [1x3 double] [1] 'double' 'T/TTT' 'Full'
'multidim' [1x4 double] [1] 'uint8' 'T/TTTT' 'Full'

See Also cdfread

2-476

cdfread

Purpose Read data from Common Data Format (CDF) file

Syntax data = cdfread(filename)
data = cdfread(filename, param1, val1, param2, val2, ...)
[data, info] = cdfread(filename, ...)

Description data = cdfread(filename) reads all the data from the Common
Data Format (CDF) file specified in the string filename. CDF data
sets typically contain a set of variables, of a specific data type, each
with an associated set of records. The variable might represent time
values with each record representing a specific time that an observation
was recorded. cdfread returns all the data in a cell array where
each column represents a variable and each row represents a record
associated with a variable. If the variables have varying numbers of
associated records, cdfread pads the rows to create a rectangular cell
array, using pad values defined in the CDF file.

Note Because cdfread creates temporary files, the current working
directory must be writeable.

data = cdfread(filename, param1, val1, param2, val2, ...)
reads data from the file, where param1, param2, and so on, can be any of
the following parameters.

Parameter Value

'Records' A vector specifying which records to read. Record numbers
are zero-based. cdfread returns a cell array with the
same number of rows as the number of records read and
as many columns as there are variables.

2-477

cdfread

Parameter Value

'Variables' A 1-by-n or n-by-1 cell array specifying the names of the
variables to read from the file. n must be less than or
equal to the total number of variables in the file. cdfread
returns a cell array with the same number of columns as
the number of variables read, and a row for each record
read.

'Slices' An m-by-3 array, where each row specifies where to start
reading along a particular dimension of a variable, the
skip interval to use on that dimension (every item, every
other item, etc.), and the total number of values to read
on that dimension. m must be less than or equal to the
number of dimensions of the variable. If m is less than
the total number of dimensions, cdfread reads every
value from the unspecified dimensions ([0 1 n], where
n is the total number of elements in the dimension.
Note: Because the 'Slices' parameter describes how to
process a single variable, it must be used in conjunction
with the 'Variables' parameter.

2-478

cdfread

Parameter Value

'ConvertEpochToDatenum' A Boolean value that determines whether cdfread
automatically converts CDF epoch data types to MATLAB
serial date numbers. If set to false (the default), cdfread
wraps epoch values in MATLABcdfepoch objects.
Note: For better performance when reading large data
sets, set this parameter to true.

'CombineRecords' A Boolean value that determines how cdfread returns
the CDF data sets read from the file. If set to false
(the default), cdfread stores the data in an m-by-n
cell array, where m is the number of records and n
is the number of variables requested. If set to true,
cdfread combines all records for a particular variable
into one cell in the output cell array. In this cell, cdfread
stores scalar data as a column array. cdfread extends
the dimensionality of nonscalar and string data. For
example, instead of creating 1000 elements containing
20-by-30 arrays for each record, cdfread stores all
the records in one cell as a 1000-by-20-by-30 array
Note: If you use the 'Records' parameter
to specify which records to read, you cannot
use the 'CombineRecords' parameter.
Note: When using the 'Variable' parameter to
read one variable, if the 'CombineRecords' parameter is
true, cdfread returns the data as an M-by-N numeric or
character array; it does not put the data into a cell array.

[data, info] = cdfread(filename, ...) returns details about the
CDF file in the info structure.

Note To maximize performance, specify both the
'ConvertEpochToDatenum' and 'CombineRecords' parameters, setting
their values to 'true'.

2-479

cdfread

Examples Read all the data from a CDF file.

data = cdfread('example.cdf');

Read the data from the variable 'Time'.

data = cdfread('example.cdf', 'Variable', {'Time'});

Read the first value in the first dimension, the second value in
the second dimension, the first and third values in the third
dimension, and all values in the remaining dimension of the variable
'multidimensional'.

data = cdfread('example.cdf', ...
'Variable', {'multidimensional'}, ...
'Slices', [0 1 1; 1 1 1; 0 2 2]);

This is similar to reading the whole variable into data and then using
matrix indexing, as in the following.

data{1}(1, 2, [1 3], :)

Collapse the records from a data set and convert CDF epoch data types
to MATLAB serial date numbers.

data = cdfread('example.cdf', ...
'CombineRecords', true, ...
'ConvertEpochToDatenum', true);

See Also cdfepoch, cdfinfo, cdfwrite

For more information about using this function, see “Common Data
Format (CDF) Files”.

2-480

cdfwrite

Purpose Write data to Common Data Format (CDF) file

Syntax cdfwrite(filename,variablelist)
cdfwrite(...,'PadValues',padvals)
cdfwrite(...,'GlobalAttributes',gattrib)
cdfwrite(..., 'VariableAttributes', vattrib)
cdfwrite(...,'WriteMode',mode)
cdfwrite(...,'Format',format)

Description cdfwrite(filename,variablelist) writes out a Common Data
Format (CDF) file, specified in filename. The filename input is a
string enclosed in single quotes. The variablelist argument is a cell
array of ordered pairs, each of which comprises a CDF variable name (a
string) and the corresponding CDF variable value. To write out multiple
records for a variable, put the values in a cell array where each element
in the cell array represents a record.

Note Because cdfwrite creates temporary files, both the destination
directory for the file and the current working directory must be
writeable.

cdfwrite(...,'PadValues',padvals) writes out pad values for given
variable names. padvals is a cell array of ordered pairs, each of which
comprises a variable name (a string) and a corresponding pad value.
Pad values are the default values associated with the variable when
an out-of-bounds record is accessed. Variable names that appear in
padvals must appear in variablelist.

cdfwrite(...,'GlobalAttributes',gattrib) writes the structure
gattrib as global metadata for the CDF file. Each field of the structure
is the name of a global attribute. The value of each field contains the
value of the attribute. To write out multiple values for an attribute,
put the values in a cell array where each element in the cell array
represents a record.

2-481

cdfwrite

Note To specify a global attribute name that is illegal in MATLAB,
create a field called 'CDFAttributeRename' in the attribute structure.
The value of this field must have a value that is a cell array of ordered
pairs. The ordered pair consists of the name of the original attribute, as
listed in the GlobalAttributes structure, and the corresponding name
of the attribute to be written to the CDF file.

cdfwrite(..., 'VariableAttributes', vattrib) writes the
structure vattrib as variable metadata for the CDF. Each field of
the struct is the name of a variable attribute. The value of each field
should be an M-by-2 cell array where M is the number of variables with
attributes. The first element in the cell array should be the name of the
variable and the second element should be the value of the attribute
for that variable.

Note To specify a variable attribute name that is illegal in MATLAB,
create a field called 'CDFAttributeRename' in the attribute structure.
The value of this field must have a value that is a cell array of ordered
pairs. The ordered pair consists of the name of the original attribute, as
listed in the VariableAttributes struct, and the corresponding name
of the attribute to be written to the CDF file. If you are specifying a
variable attribute of a CDF variable that you are renaming, the name of
the variable in the VariableAttributes structure must be the same
as the renamed variable.

cdfwrite(...,'WriteMode',mode), where mode is either 'overwrite'
or 'append', indicates whether or not the specified variables should be
appended to the CDF file if the file already exists. By default, cdfwrite
overwrites existing variables and attributes.

cdfwrite(...,'Format',format), where format is either 'multifile'
or 'singlefile', indicates whether or not the data is written out as a
multifile CDF. In a multifile CDF, each variable is stored in a separate

2-482

cdfwrite

file with the name *.vN, where N is the number of the variable that is
written out to the CDF. By default, cdfwrite writes out a single file
CDF. When 'WriteMode' is set to 'Append', the 'Format' option is
ignored, and the format of the preexisting CDF is used.

Examples Write out a file 'example.cdf' containing a variable 'Longitude' with
the value [0:360].

cdfwrite('example', {'Longitude', 0:360});

Write out a file 'example.cdf' containing variables 'Longitude' and
'Latitude' with the variable 'Latitude' having a pad value of 10 for
all out-of-bounds records that are accessed.

cdfwrite('example', {'Longitude', 0:360, 'Latitude', 10:20}, ...

'PadValues', {'Latitude', 10});

Write out a file 'example.cdf', containing a variable 'Longitude'
with the value [0:360], and with a variable attribute of 'validmin'
with the value 10.

varAttribStruct.validmin = {'longitude' [10]};

cdfwrite('example', {'Longitude' 0:360}, 'VarAttribStruct', ...

varAttribStruct);

See Also cdfread, cdfinfo, cdfepoch

2-483

ceil

Purpose Round toward infinity

Syntax B = ceil(A)

Description B = ceil(A) rounds the elements of A to the nearest integers greater
than or equal to A. For complex A, the imaginary and real parts are
rounded independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.6i]

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6
7.0000 2.4000 + 3.6000i

ceil(a)

ans =
Columns 1 through 4
-1.0000 0 4.0000 6.0000

Columns 5 through 6
7.0000 3.0000 + 4.0000i

See Also fix, floor, round

2-484

cell

Purpose Construct cell array

Syntax c = cell(n)
c = cell(m, n)
c = cell([m, n])
c = cell(m, n, p,...)
c = cell([m n p ...])
c = cell(size(A))
c = cell(javaobj)

Description c = cell(n) creates an n-by-n cell array of empty matrices. An error
message appears if n is not a scalar.

c = cell(m, n) or c = cell([m, n]) creates an m-by-n cell array of
empty matrices. Arguments m and n must be scalars.

c = cell(m, n, p,...) or c = cell([m n p ...]) creates an
m-by-n-by-p-... cell array of empty matrices. Arguments m, n, p,... must
be scalars.

c = cell(size(A)) creates a cell array the same size as A containing
all empty matrices.

c = cell(javaobj) converts a Java array or Java object javaobj into
a MATLAB cell array. Elements of the resulting cell array will be of the
MATLAB type (if any) closest to the Java array elements or Java object.

Remarks This type of cell is not related to “cell mode,” a MATLAB feature used in
debugging and publishing.

Examples This example creates a cell array that is the same size as another array,
A.

A = ones(2,2)

A =
1 1
1 1

2-485

cell

c = cell(size(A))

c =
[] []
[] []

The next example converts an array of java.lang.String objects into a
MATLAB cell array.

strArray = java_array('java.lang.String', 3);
strArray(1) = java.lang.String('one');
strArray(2) = java.lang.String('two');
strArray(3) = java.lang.String('three');

cellArray = cell(strArray)
cellArray =

'one'
'two'
'three'

See Also num2cell, ones, rand, randn, zeros

2-486

cell2mat

Purpose Convert cell array of matrices to single matrix

Syntax m = cell2mat(c)

Description m = cell2mat(c) converts a multidimensional cell array c with
contents of the same data type into a single matrix, m. The contents of c
must be able to concatenate into a hyperrectangle. Moreover, for each
pair of neighboring cells, the dimensions of the cells’ contents must
match, excluding the dimension in which the cells are neighbors.

The example shown below combines matrices in a 3-by-2 cell array into
a single 60-by-50 matrix:

cell2mat(c)

Remarks The dimensionality (or number of dimensions) of m will match the
highest dimensionality contained in the cell array.

cell2mat is not supported for cell arrays containing cell arrays or
objects.

Examples Combine the matrices in four cells of cell array C into the single matrix,
M:

C = {[1] [2 3 4]; [5; 9] [6 7 8; 10 11 12]}

2-487

cell2mat

C =
[1] [1x3 double]
[2x1 double] [2x3 double]

C{1,1} C{1,2}
ans = ans =

1 2 3 4

C{2,1} C{2,2}
ans = ans =

5 6 7 8
9 10 11 12

M = cell2mat(C)
M =

1 2 3 4
5 6 7 8
9 10 11 12

See Also mat2cell, num2cell

2-488

cell2struct

Purpose Convert cell array to structure array

Syntax s = cell2struct(c, fields, dim)

Description s = cell2struct(c, fields, dim) creates a structure array s from
the information contained within cell array c.

The fields argument specifies field names for the structure array.
fields can be a character array or a cell array of strings.

The dim argument controls which axis of the cell array is to be used
in creating the structure array. The length of c along the specified
dimension must match the number of fields named in fields. In other
words, the following must be true.

size(c,dim) == length(fields) % If fields is a cell array
size(c,dim) == size(fields,1) % If fields is a char array

Examples The cell array c in this example contains information on trees. The
three columns of the array indicate the common name, genus, and
average height of a tree.

c = {'birch', 'betula', 65; 'maple', 'acer', 50}
c =

'birch' 'betula' [65]
'maple' 'acer' [50]

To put this information into a structure with the fields name, genus, and
height, use cell2struct along the second dimension of the 2-by-3
cell array.

fields = {'name', 'genus', 'height'};
s = cell2struct(c, fields, 2);

This yields the following 2-by-1 structure array.

s(1) s(2)
ans = ans =

name: 'birch' name: 'maple'

2-489

cell2struct

genus: 'betula' genus: 'acer'
height: 65 height: 50

See Also struct2cell, cell, iscell, struct, isstruct, fieldnames, dynamic
field names

2-490

celldisp

Purpose Cell array contents

Syntax celldisp(C)
celldisp(C, name)

Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C, name) uses the string name for the display instead of the
name of the first input (or ans).

Examples Use celldisp to display the contents of a 2-by-3 cell array:

C = {[1 2] 'Tony' 3+4i; [1 2;3 4] -5 'abc'};
celldisp(C)

C{1,1} =
1 2

C{2,1} =
1 2
3 4

C{1,2} =
Tony

C{2,2} =
-5

C{1,3} =
3.0000+ 4.0000i

C{2,3} =
abc

See Also cellplot

2-491

cellfun

Purpose Apply function to each cell in cell array

Syntax A = cellfun(fun, C)
A = cellfun(fun, C, D, ...)
[A, B, ...] = cellfun(fun, C, ...)
[A, ...] = cellfun(fun, C, ..., 'param1', value1, ...)
A = cellfun('fname', C)
A = cellfun('size', C, k)
A = cellfun('isclass', C, 'classname')

Description A = cellfun(fun, C) applies the function specified by fun to the
contents of each cell of cell array C, and returns the results in array
A. The value A returned by cellfun is the same size as C, and the
(I,J,...)th element of A is equal to fun(C{I,J,...}). The first input
argument fun is a function handle to a function that takes one input
argument and returns a scalar value. fun must return values of the
same class each time it is called. The order in which cellfun computes
elements of A is not specified and should not be relied upon.

If fun is bound to more than one built-in or M-file (that is, if it
represents a set of overloaded functions), then the class of the values
that cellfun actually provides as input arguments to fun determines
which functions are executed.

A = cellfun(fun, C, D, ...) evaluates fun using the contents of
the cells of cell arrays C, D, ... as input arguments. The (I,J,...)th
element of A is equal to fun(C{I,J,...}, D{I,J,...}, ...). All
input arguments must be of the same size and shape.

[A, B, ...] = cellfun(fun, C, ...) evaluates fun, which is a
function handle to a function that returns multiple outputs, and returns
arrays A, B, ..., each corresponding to one of the output arguments of
fun. cellfun calls fun each time with as many outputs as there are in
the call to cellfun. fun can return output arguments having different
classes, but the class of each output must be the same each time fun
is called.

[A, ...] = cellfun(fun, C, ..., 'param1', value1, ...)
enables you to specify optional parameter name and value pairs.

2-492

cellfun

Parameters recognized by cellfun are shown below. Enclose each
parameter name with single quotes.

Parameter Name Parameter Value

UniformOutput Logical 1 (true) or 0 (false), indicating
whether or not the outputs of fun can be
returned without encapsulation in a cell
array. See “UniformOutput Parameter” on
page 2-493 below.

ErrorHandler Function handle, specifying the function that
cellfun is to call if the call to fun fails. See
“ErrorHandler Parameter” on page 2-493
below.

UniformOutput Parameter

If you set the UniformOutput parameter to true (the default), fun must
return scalar values that can be concatenated into an array. These
values can also be a cell array.

If UniformOutput is false, cellfun returns a cell array (or multiple
cell arrays), where the (I,J,...)th cell contains the value

fun(C{I,J,...}, ...)

ErrorHandler Parameter

MATLAB calls the function represented by the ErrorHandler
parameter with two input arguments:

• A structure having three fields, named identifier, message,
and index, respectively containing the identifier of the error that
occurred, the text of the error message, and a linear index into the
input array or arrays for which the error occurred

• The set of input arguments for which the call to the function failed

The error handling function must either rethrow the error that was
caught, or it must return the output values from the call to fun. Error

2-493

cellfun

handling functions that do not rethrow the error must have the same
number of outputs as fun. MATLAB places these output values in the
output variables used in the call to arrayfun.

Shown here is an example of a simple error handling function, errorfun:

function [A, B] = errorfun(S, varargin)
warning(S.identifier, S.message);
A = NaN; B = NaN;

If 'UniformOutput' is set to logical 1 (true), the outputs of the error
handler must be scalars and of the same data type as the outputs of
function fun.

If you do not specify an error handler, cellfun rethrows the error.

Backward Compatibility

The following syntaxes are also accepted for backward compatibility:

A = cellfun('fname', C) applies the function fname to the elements
of cell array C and returns the results in the double array A. Each
element of A contains the value returned by fname for the corresponding
element in C. The output array A is the same size as the cell array C.

These functions are supported:

Function Return Value

isempty true for an empty cell element

islogical true for a logical cell element

isreal true for a real cell element

length Length of the cell element

ndims Number of dimensions of the cell element

prodofsize Number of elements in the cell element

A = cellfun('size', C, k) returns the size along the kth dimension
of each element of C.

2-494

cellfun

A = cellfun('isclass', C, 'classname') returns logical 1 (true)
for each element of C that matches classname. This function syntax
returns logical 0 (false) for objects that are a subclass of classname.

Note For the previous three syntaxes, if C contains objects, cellfun does
not call any overloaded versions of MATLAB functions corresponding
to the above strings.

Examples Compute the mean of several data sets:

C = {1:10, [2; 4; 6], []};

Cmeans = cellfun(@mean, C)
Cmeans =

5.5000 4.0000 NaN

Compute the size of these data sets:

[Cnrows, Cncols] = cellfun(@size, C)
Cnrows =

1 3 0
Cncols =

10 1 0

Again compute the size, but with UniformOutput set to false:

Csize = cellfun(@size, C, 'UniformOutput', false)
Csize =

[1x2 double] [1x2 double] [1x2 double]

Csize{:}
ans =

1 10
ans =

3 1
ans =

2-495

cellfun

0 0

Find the positive values in several data sets.

C = {randn(10,1), randn(20,1), randn(30,1)};

Cpositives = cellfun(@(x) x(x>0), C, 'UniformOutput',false)
Cpositives =

[6x1 double] [11x1 double] [15x1 double]

Cpositives{:}
ans =

0.1253
0.2877
1.1909
etc.

ans =
0.7258
2.1832
0.1139
etc.

ans =
0.6900
0.8156
0.7119
etc.

Compute the covariance between several pairs of data sets:

C = {randn(10,1), randn(20,1), randn(30,1)};
D = {randn(10,1), randn(20,1), randn(30,1)};

CDcovs = cellfun(@cov, C, D, 'UniformOutput', false)
CDcovs =

[2x2 double] [2x2 double] [2x2 double]

CDcovs{:}
ans =

2-496

cellfun

0.7353 -0.2148
-0.2148 0.6080

ans =
0.5743 -0.2912

-0.2912 0.8505
ans =

0.7130 0.1750
0.1750 0.6910

See Also arrayfun, spfun, function_handle, cell2mat

2-497

cellplot

Purpose Graphically display structure of cell array

Syntax cellplot(c)
cellplot(c, 'legend')
handles = cellplot(c)

Description cellplot(c) displays a figure window that graphically represents
the contents of c. Filled rectangles represent elements of vectors and
arrays, while scalars and short text strings are displayed as text.

cellplot(c, 'legend') places a colorbar next to the plot labelled to
identify the data types in c.

handles = cellplot(c) displays a figure window and returns a vector
of surface handles.

Limitations The cellplot function can display only two-dimensional cell arrays.

Examples Consider a 2-by-2 cell array containing a matrix, a vector, and two text
strings:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

The command cellplot(c) produces

2-498

cellplot

2-499

cellstr

Purpose Create cell array of strings from character array

Syntax c = cellstr(S)

Description c = cellstr(S) places each row of the character array S into separate
cells of c. Any trailing spaces in the rows of S are removed.

Use the char function to convert back to a string matrix.

Examples Given the string matrix

S = ['abc '; 'defg'; 'hi ']

S =
abc
defg
hi

whos S
Name Size Bytes Class
S 3x4 24 char array

The following command returns a 3-by-1 cell array.

c = cellstr(S)

c =
'abc'
'defg'
'hi'

whos c
Name Size Bytes Class
c 3x1 294 cell array

See Also iscellstr, strings, char, isstrprop

2-500

cgs

Purpose Conjugate gradients squared method

Syntax x = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)
cgs(A,b,tol,maxit,M)
cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag] = cgs(A,b,...)
[x,flag,relres] = cgs(A,b,...)
[x,flag,relres,iter] = cgs(A,b,...)
[x,flag,relres,iter,resvec] = cgs(A,b,...)

Description x = cgs(A,b) attempts to solve the system of linear equations A*x = b
for x. The n-by-n coefficient matrix A must be square and should be large
and sparse. The column vector b must have length n. A can be a function
handle afun such that afun(x) returns A*x. See “Function Handles” in
the MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If cgs converges, a message to that effect is displayed. If cgs fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

cgs(A,b,tol) specifies the tolerance of the method, tol. If tol is [],
then cgs uses the default, 1e-6.

cgs(A,b,tol,maxit) specifies the maximum number of iterations,
maxit. If maxit is [] then cgs uses the default, min(n,20).

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then cgs applies no

2-501

cgs

preconditioner. M can be a function handle mfun such that mfun(x)
returns M\x.

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial guess x0. If x0 is
[], then cgs uses the default, an all-zero vector.

[x,flag] = cgs(A,b,...) returns a solution x and a flag that
describes the convergence of cgs.

Flag Convergence

0 cgs converged to the desired tolerance tol
within maxit iterations.

1 cgs iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 cgs stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during
cgs became too small or too large to continue
computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = cgs(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,iter] = cgs(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,...) also returns a vector
of the residual norms at each iteration, including norm(b-A*x0).

Examples Example

A = gallery('wilk',21);
b = sum(A,2);

2-502

cgs

tol = 1e-12; maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x = cgs(A,b,tol,maxit,M1);

displays the message

cgs converged at iteration 13 to a solution with relative residual
1.3e-016

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun, and the preconditioner M1 with a
handle to a backsolve function mfun. The example is contained in an
M-file run_cgs that

• Calls cgs with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_cgs
are available to afun and myfun.

The following shows the code for run_cgs:

function x1 = run_cgs
n = 21;
A = gallery('wilk',n);
b = sum(A,2);
tol = 1e-12; maxit = 15;
x1 = cgs(@afun,b,tol,maxit,@mfun);

function y = afun(x)
y = [0; x(1:n-1)] + ...

[((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
[x(2:n); 0];

end

function y = mfun(r)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

end

2-503

cgs

end

When you enter

x1 = run_cgs

MATLAB returns

cgs converged at iteration 13 to a solution with relative residual
1.3e-016

Example 3

load west0479
A = west0479
b = sum(A,2)
[x,flag] = cgs(A,b)

flag is 1 because cgs does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5)
[x1,flag1] = cgs(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal,
and cgs fails in the first iteration when it tries to solve a system such
as U1*y = r for y with backslash.

[L2,U2] = luinc(A,1e-6)
[x2,flag2,relres2,iter2,resvec2] = cgs(A,b,1e-15,10,L2,U2)

flag2 is 0 because cgs converges to the tolerance of 6.344e-16 (the
value of relres2) at the fifth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(6) = norm(b-A*x2).
You can follow the progress of cgs by plotting the relative residuals at
each iteration starting from the initial estimate (iterate number 0) with

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')

2-504

cgs

ylabel('relative residual')

See Also bicg, bicgstab, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

function_handle (@), mldivide (\)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric
linear systems,” SIAM J. Sci. Stat. Comput., January 1989, Vol. 10,
No. 1, pp. 36-52.

2-505

char

Purpose Convert to character array (string)

Syntax S = char(X)
S = char(C)
S = char(t1, t2, t3, ...)

Description S = char(X) converts the array X that contains nonnegative integers
representing character codes into a MATLAB character array. The
actual characters displayed depend on the character encoding scheme
for a given font. The result for any elements of X outside the range from
0 to 65535 is not defined (and can vary from platform to platform). Use
double to convert a character array into its numeric codes.

S = char(C), when C is a cell array of strings, places each element of C
into the rows of the character array s. Use cellstr to convert back.

S = char(t1, t2, t3, ...) forms the character array S containing
the text strings T1, T2, T3, ... as rows, automatically padding each
string with blanks to form a valid matrix. Each text parameter, Ti, can
itself be a character array. This allows the creation of arbitrarily large
character arrays. Empty strings are significant.

Examples To print a 3-by-32 display of the printable ASCII characters,

ascii = char(reshape(32:127, 32, 3)')
ascii =

!"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
'abcdefghijklmnopqrstuvwxyz{|}~

See Also ischar, isletter, isspace, isstrprop, cellstr, iscellstr, get, set,
strings, strvcat, text

2-506

checkin

Purpose Check files into source control system (UNIX)

GUI
Alternatives

As an alternative to the checkin function, use File > Source
Control > Check In in the Editor/Debugger, Simulink, or Stateflow,
or in the context menu of the Current Directory browser. For more
information, see “Checking Files Into the Source Control System”.

Syntax checkin('filename','comments','comment_text')
checkin({'filename1','filename2'},'comments','comment_text')
checkin('filename','comments', 'comment_text','option',

'value')

Description checkin('filename','comments','comment_text') checks in the file
named filename to the source control system. Use the full path for
filename and include the file extension. You must save the file before
checking it in, but the file can be open or closed. The comment_text
argument is a MATLAB string containing checkin comments for the
source control system. You must supply comments and comment_text.

checkin({'filename1','filename2'},'comments','comment_text')
checks in the files filename1 through filenamen to the source control
system. Use the full paths for the files and include file extensions.
Comments apply to all files checked in.

checkin('filename','comments',
'comment_text','option','value') provides
additional checkin options. For multiple filenames, use an array of
strings instead of filename, that is, {'filename1','filename2',...}.
Options apply to all filenames. The option and value arguments are
shown in the following table.

2-507

checkin

option
Argument

value
Argument Purpose

'force' 'on' filename is checked in even if the file
has not changed since it was checked
out.

'force' 'off'
(default)

filename is not checked in if there
were no changes since checkout.

'lock' 'on' filename is checked in with
comments, and is automatically
checked out.

'lock' 'off'
(default)

filename is checked in with
comments but does not remain
checked out.

Examples Check In a File

Typing

checkin('/myserver/mymfiles/clock.m','comments',...
'Adjustment for leapyear')

checks the file /myserver/mymfiles/clock.m into the source control
system, with the comment Adjustment for leapyear.

Check In Multiple Files

Typing

checkin({'/myserver/mymfiles/clock.m', ...
'/myserver/mymfiles/calendar.m'},'comments',...
'Adjustment for leapyear')

checks the two files into the source control system, using the same
comment for each.

2-508

checkin

Check In a File and Keep It Checked Out

Typing

checkin('/myserver/mymfiles/clock.m','comments',...
'Adjustment for leapyear','lock','on')

checks the file /myserver/mymfiles/clock.m into the source control
system and keeps the file checked out.

See Also checkout, cmopts, undocheckout

For Windows platforms, use verctrl.

2-509

checkout

Purpose Check files out of source control system (UNIX)

GUI
Alternatives

As an alternative to the checkout function, select Source
Control > Check Out from the File menu in the Editor/Debugger,
Simulink, or Stateflow, or in the context menu of the Current Directory
browser. For details, see “Checking Files Out of the Source Control
System”.

Syntax checkout('filename')
checkout({'filename1','filename2', ...})
checkout('filename','option','value',...)

Description checkout('filename') checks out the file named filename from the
source control system. Use the full path for filename and include the
file extension. The file can be open or closed when you use checkout.

checkout({'filename1','filename2', ...}) checks out the files
named filename1 through filenamen from the source control system.
Use the full paths for the files and include the file extensions.

checkout('filename','option','value',...) provides additional
checkout options. For multiple filenames, use an array of strings
instead of filename, that is, {'filename1','filename2', ...}.
Options apply to all filenames. The option and value arguments are
shown in the following table.

option Argument value Argument Purpose

'force' 'on' The checkout is
forced, even if you
already have the
file checked out.
This is effectively
an undocheckout
followed by a
checkout.

2-510

checkout

option Argument value Argument Purpose

'force' 'off' (default) Prevents you from
checking out the file
if you already have it
checked out.

'lock' 'on' (default) The checkout gets
the file, allows you to
write to it, and locks
the file so that access
to the file for others is
read only.

'lock' 'off' The checkout gets a
read-only version of
the file, allowing
another user to
check out the file
for updating. You do
not have to check the
file in after checking
it out with this option.

’revision’ ’version_num’ Checks out the
specified revision
of the file.

If you end the MATLAB session, the file remains checked out. You can
check in the file from within MATLAB during a later session, or directly
from your source control system.

Examples Check Out a File

Typing

checkout('/myserver/mymfiles/clock.m')

2-511

checkout

checks out the file /myserver/mymfiles/clock.m from the source
control system.

Check Out Multiple Files

Typing

checkout({'/myserver/mymfiles/clock.m',...
'/myserver/mymfiles/calendar.m'})

checks out /matlab/mymfiles/clock.m and
/matlab/mymfiles/calendar.m from the source control
system.

Force a Checkout, Even If File Is Already Checked Out

Typing

checkout('/myserver/mymfiles/clock.m','force','on')

checks out /matlab/mymfiles/clock.m even if clock.m is already
checked out to you.

Check Out Specified Revision of File

Typing

checkout('/matlab/mymfiles/clock.m','revision','1.1')

checks out revision 1.1 of clock.m.

See Also checkin, cmopts, undocheckout, customverctrl

For Windows platforms, use verctrl.

2-512

chol

Purpose Cholesky factorization

Syntax R = chol(A)
L = chol(A,'lower')
[R,p] = chol(A)
[L,p] = chol(A,'lower')
[R,p,S] = chol(A)
[R,p,s] = chol(A,'vector')
[L,p,s] = chol(A,'lower','vector')

Description R = chol(A) produces an upper triangular matrix R from the diagonal
and upper triangle of matrix A, satisfying the equation R'*R=A. The
lower triangle is assumed to be the (complex conjugate) transpose of the
upper triangle. Matrix A must be positive definite; otherwise, MATLAB
displays an error message.

L = chol(A,'lower') produces a lower triangular matrix L from the
diagonal and lower triangle of matrix A, satisfying the equation L*L'=A.
When A is sparse, this syntax of chol is typically faster. Matrix A must
be positive definite; otherwise MATLAB displays an error message.

[R,p] = chol(A) for positive definite A, produces an upper triangular
matrix R from the diagonal and upper triangle of matrix A, satisfying
the equation R'*R=A and p is zero. If A is not positive definite, then p
is a positive integer and MATLAB does not generate an error. When
A is full, R is an upper triangular matrix of order q=p-1 such that
R'*R=A(1:q,1:q). When A is sparse, R is an upper triangular matrix
of size q-by-n so that the L-shaped region of the first q rows and first q
columns of R'*R agree with those of A.

[L,p] = chol(A,'lower') for positive definite A, produces a lower
triangular matrix L from the diagonal and lower triangle of matrix A,
satisfying the equation L'*L=A and p is zero. If A is not positive definite,
then p is a positive integer and MATLAB does not generate an error.
When A is full, L is a lower triangular matrix of order q=p-1 such that
L'*L=A(1:q,1:q). When A is sparse, L is a lower triangular matrix of
size q-by-n so that the L-shaped region of the first q rows and first q
columns of L'*L agree with those of A.

2-513

chol

[R,p,S] = chol(A), when A is sparse, returns a permutation matrix
S. Note that the preordering S may differ from that obtained from amd
since chol will slightly change the ordering for increased performance.
When p=0, R is an upper triangular matrix such that R'*R=S'*A*S.
When p is not zero, R is an upper triangular matrix of size q-by-n so
that the L-shaped region of the first q rows and first q columns of R'*R
agree with those of S'*A*S. The factor of S'*A*S tends to be sparser
than the factor of A.

[R,p,s] = chol(A,'vector') returns the permutation information as
a vector s such that A(s,s)=R'*R, when p=0. You can use the 'matrix'
option in place of 'vector' to obtain the default behavior.

[L,p,s] = chol(A,'lower','vector') uses only the diagonal and
the lower triangle of A and returns a lower triangular matrix L and
a permutation vector s such that A(s,s)=L*L', when p=0. As above,
you can use the 'matrix' option in place of 'vector' to obtain a
permutation matrix.

For sparse A, CHOLMOD is used to compute the Cholesky factor.

Note Using chol is preferable to using eig for determining positive
definiteness.

Examples The binomial coefficients arranged in a symmetric array create an
interesting positive definite matrix.

n = 5;
X = pascal(n)
X =

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

2-514

chol

It is interesting because its Cholesky factor consists of the same
coefficients, arranged in an upper triangular matrix.

R = chol(X)
R =

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

Destroy the positive definiteness (and actually make the matrix
singular) by subtracting 1 from the last element.

X(n,n) = X(n,n)-1

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization fails.

Algorithm For full matrices X, chol uses the LAPACK routines listed in the
following table.

Real Complex

X double DPOTRF ZPOTRF

X single SPOTRF CPOTRF

For sparse matrices, MATLAB uses CHOLMOD to compute the
Cholesky factor.

2-515

chol

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

[2] Davis, T. A., CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2005.

See Also cholinc, cholupdate

2-516

http://www.netlib.org/lapack/lug/lapack_lug.html
http://%20www.cise.ufl.edu/research/sparse/cholmod

cholinc

Purpose Sparse incomplete Cholesky and Cholesky-Infinity factorizations

Syntax R = cholinc(X,droptol)
R = cholinc(X,options)
R = cholinc(X,'0')
[R,p] = cholinc(X,'0')
R = cholinc(X,'inf')

Description cholinc produces two different kinds of incomplete Cholesky
factorizations: the drop tolerance and the 0 level of fill-in factorizations.
These factors may be useful as preconditioners for a symmetric positive
definite system of linear equations being solved by an iterative method
such as pcg (Preconditioned Conjugate Gradients). cholinc works only
for sparse matrices.

R = cholinc(X,droptol) performs the incomplete Cholesky
factorization of X, with drop tolerance droptol.

R = cholinc(X,options) allows additional options to the incomplete
Cholesky factorization. options is a structure with up to three fields:

droptol Drop tolerance of the incomplete factorization

michol Modified incomplete Cholesky

rdiag Replace zeros on the diagonal of R

Only the fields of interest need to be set.

droptol is a non-negative scalar used as the drop tolerance for the
incomplete Cholesky factorization. This factorization is computed by
performing the incomplete LU factorization with the pivot threshold
option set to 0 (which forces diagonal pivoting) and then scaling the
rows of the incomplete upper triangular factor, U, by the square root
of the diagonal entries in that column. Since the nonzero entries
U(i,j) are bounded below by droptol*norm(X(:,j)) (see luinc), the
nonzero entries R(i,j) are bounded below by the local drop tolerance
droptol*norm(X(:,j))/R(i,i).

2-517

cholinc

Setting droptol = 0 produces the complete Cholesky factorization,
which is the default.

michol stands for modified incomplete Cholesky factorization. Its value
is either 0 (unmodified, the default) or 1 (modified). This performs the
modified incomplete LU factorization of X and scales the returned upper
triangular factor as described above.

rdiag is either 0 or 1. If it is 1, any zero diagonal entries of the upper
triangular factor R are replaced by the square root of the local drop
tolerance in an attempt to avoid a singular factor. The default is 0.

R = cholinc(X,'0') produces the incomplete Cholesky factor of a real
sparse matrix that is symmetric and positive definite using no fill-in.
The upper triangular R has the same sparsity pattern as triu(X),
although R may be zero in some positions where X is nonzero due to
cancellation. The lower triangle of X is assumed to be the transpose of
the upper. Note that the positive definiteness of X does not guarantee
the existence of a factor with the required sparsity. An error message
results if the factorization is not possible. If the factorization is
successful, R'*R agrees with X over its sparsity pattern.

[R,p] = cholinc(X,'0') with two output arguments, never produces
an error message. If R exists, p is 0. If R does not exist, then p is a
positive integer and R is an upper triangular matrix of size q-by-n where
q = p-1. In this latter case, the sparsity pattern of R is that of the
q-by-n upper triangle of X. R'*R agrees with X over the sparsity pattern
of its first q rows and first q columns.

R = cholinc(X,'inf') produces the Cholesky-Infinity factorization.
This factorization is based on the Cholesky factorization, and
additionally handles real positive semi-definite matrices. It may be
useful for finding a solution to systems which arise in interior-point
methods. When a zero pivot is encountered in the ordinary Cholesky
factorization, the diagonal of the Cholesky-Infinity factor is set to Inf
and the rest of that row is set to 0. This forces a 0 in the corresponding
entry of the solution vector in the associated system of linear equations.
In practice, X is assumed to be positive semi-definite so even negative
pivots are replaced with a value of Inf.

2-518

cholinc

Remarks The incomplete factorizations may be useful as preconditioners
for solving large sparse systems of linear equations. A single 0 on
the diagonal of the upper triangular factor makes it singular. The
incomplete factorization with a drop tolerance prints a warning message
if the upper triangular factor has zeros on the diagonal. Similarly, using
the rdiag option to replace a zero diagonal only gets rid of the symptoms
of the problem, but it does not solve it. The preconditioner may not be
singular, but it probably is not useful, and a warning message is printed.

The Cholesky-Infinity factorization is meant to be used within
interior-point methods. Otherwise, its use is not recommended.

Examples Example 1

Start with a symmetric positive definite matrix, S.

S = delsq(numgrid('C',15));

S is the two-dimensional, five-point discrete negative Lapacian on the
grid generated by numgrid(’C’,15).

Compute the Cholesky factorization and the incomplete Cholesky
factorization of level 0 to compare the fill-in. Make S singular by zeroing
out a diagonal entry and compute the (partial) incomplete Cholesky
factorization of level 0.

C = chol(S);
R0 = cholinc(S,'0');
S2 = S; S2(101,101) = 0;
[R,p] = cholinc(S2,'0');

Fill-in occurs within the bands of S in the complete Cholesky factor, but
none in the incomplete Cholesky factor. The incomplete factorization
of the singular S2 stopped at row p = 101 resulting in a 100-by-139
partial factor.

D1 = (R0'*R0).*spones(S)-S;
D2 = (R'*R).*spones(S2)-S2;

2-519

cholinc

D1 has elements of the order of eps, showing that R0'*R0 agrees with S
over its sparsity pattern. D2 has elements of the order of eps over its
first 100 rows and first 100 columns, D2(1:100,:) and D2(:,1:100).

Example 2

The first subplot below shows that cholinc(S,0), the incomplete
Cholesky factor with a drop tolerance of 0, is the same as the Cholesky
factor of S. Increasing the drop tolerance increases the sparsity of the
incomplete factors, as seen below.

2-520

cholinc

Unfortunately, the sparser factors are poor approximations, as is seen
by the plot of drop tolerance versus norm(R'*R-S,1)/norm(S,1) in
the next figure.

2-521

cholinc

Example 3

The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically
positive definite:

H3 = hilb(3)
H3 =

1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

R3 = chol(H3)
R3 =

1.0000 0.5000 0.3333
0 0.2887 0.2887
0 0 0.0745

In practice, the Cholesky factorization breaks down for larger matrices:

H20 = sparse(hilb(20));

2-522

cholinc

[R,p] = chol(H20);
p =

14

For hilb(20), the Cholesky factorization failed in the computation
of row 14 because of a numerically zero pivot. You can use the
Cholesky-Infinity factorization to avoid this error. When a zero pivot is
encountered, cholinc places an Inf on the main diagonal, zeros out the
rest of the row, and continues with the computation:

Rinf = cholinc(H20,'inf');

In this case, all subsequent pivots are also too small, so the remainder
of the upper triangular factor is:

full(Rinf(14:end,14:end))
ans =

Inf 0 0 0 0 0 0
0 Inf 0 0 0 0 0
0 0 Inf 0 0 0 0
0 0 0 Inf 0 0 0
0 0 0 0 Inf 0 0
0 0 0 0 0 Inf 0
0 0 0 0 0 0 Inf

Limitations cholinc works on square sparse matrices only. For cholinc(X,'0')
and cholinc(X,'inf'), X must be real.

Algorithm R = cholinc(X,droptol) is obtained from [L,U] =
luinc(X,options), where options.droptol = droptol and
options.thresh = 0. The rows of the uppertriangular U are scaled
by the square root of the diagonal in that row, and this scaled factor
becomes R.

R = cholinc(X,options) is produced in a similar manner, except the
rdiag option translates into the udiag option and the milu option takes
the value of the michol option.

2-523

cholinc

R = cholinc(X,'0') is based on the “KJI” variant of the Cholesky
factorization. Updates are made only to positions which are nonzero
in the upper triangle of X.

R = cholinc(X,'inf') is based on the algorithm in Zhang [2].

See Also chol, ilu, luinc, pcg

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS
Publishing Company, 1996. Chapter 10, “Preconditioning Techniques”

[2] Zhang, Yin, Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment, Department of Mathematics
and Statistics, University of Maryland Baltimore County, Technical
Report TR96-01

2-524

cholupdate

Purpose Rank 1 update to Cholesky factorization

Syntax R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+')
R1 = cholupdate(R,x,'-')
[R1,p] = cholupdate(R,x,'-')

Description R1 = cholupdate(R,x) where R = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A +
x*x', where x is a column vector of appropriate length. cholupdate
uses only the diagonal and upper triangle of R. The lower triangle of R
is ignored.

R1 = cholupdate(R,x,'+') is the same as R1 = cholupdate(R,x).

R1 = cholupdate(R,x,'-') returns the Cholesky factor of A - x*x'.
An error message reports when R is not a valid Cholesky factor or when
the downdated matrix is not positive definite and so does not have
a Cholesky factorization.

[R1,p] = cholupdate(R,x,'-') will not return an error message. If p
is 0, R1 is the Cholesky factor of A - x*x’. If p is greater than 0, R1 is
the Cholesky factor of the original A. If p is 1, cholupdate failed because
the downdated matrix is not positive definite. If p is 2, cholupdate
failed because the upper triangle of R was not a valid Cholesky factor.

Remarks cholupdate works only for full matrices.

Example A = pascal(4)
A =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

R = chol(A)
R =

2-525

cholupdate

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

x = [0 0 0 1]';

This is called a rank one update to A since rank(x*x') is 1:

A + x*x'
ans =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'),
we can use cholupdate:

R1 = cholupdate(R,x)
R1 =

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix
singular) by subtracting 1 from the last element of A. The downdated
matrix is:

A - x*x'
ans =

1 1 1 1
1 2 3 4

2-526

cholupdate

1 3 6 10
1 4 10 19

Compare chol with cholupdate:

R1 = chol(A-x*x')
??? Error using ==> chol
Matrix must be positive definite.
R1 = cholupdate(R,x,'-')
??? Error using ==> cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky
factor:

x = [0 0 0 1/sqrt(2)]';
R1 = cholupdate(R,x,'-')
R1 =

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 0.7071

Algorithm cholupdate uses the algorithms from the LINPACK subroutines ZCHUD
and ZCHDD. cholupdate is useful since computing the new Cholesky

factor from scratch is an algorithm, while simply updating the

existing factor in this way is an algorithm.

See Also chol, qrupdate

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK
Users’ Guide, SIAM, Philadelphia, 1979.

2-527

circshift

Purpose Shift array circularly

Syntax B = circshift(A,shiftsize)

Description B = circshift(A,shiftsize) circularly shifts the values in the array, A,
by shiftsize elements. shiftsize is a vector of integer scalars where
the n-th element specifies the shift amount for the n-th dimension
of array A. If an element in shiftsize is positive, the values of A are
shifted down (or to the right). If it is negative, the values of A are shifted
up (or to the left). If it is 0, the values in that dimension are not shifted.

Example Circularly shift first dimension values down by 1.

A = [1 2 3;4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

B = circshift(A,1)
B =

7 8 9
1 2 3
4 5 6

Circularly shift first dimension values down by 1 and second dimension
values to the left by 1.

B = circshift(A,[1 -1]);
B =

8 9 7
2 3 1
5 6 4

See Also fftshift, shiftdim

2-528

cla

Purpose Clear current axes

GUI
Alternatives

Remove axes and clear objects from them in plot edit mode. For details,
see “Using Plot Edit Mode” in the MATLAB Graphics documentation.

Syntax cla
cla reset
cla(ax)
cla(ax,'reset')

Description cla deletes from the current axes all graphics objects whose handles
are not hidden (i.e., their HandleVisibility property is set to on).

cla reset deletes from the current axes all graphics objects regardless
of the setting of their HandleVisibility property and resets all axes
properties, except Position and Units, to their default values.

cla(ax) or cla(ax,'reset') clears the single axes with handle ax.

Remarks The cla command behaves the same way when issued on the command
line as it does in callback routines — it does not recognize the
HandleVisibility setting of callback. This means that when issued
from within a callback routine, cla deletes only those objects whose
HandleVisibility property is set to on.

See Also clf, hold, newplot, reset

“Axes Operations” on page 1-95 for related functions

2-529

clabel

Purpose Contour plot elevation labels

Syntax clabel(C,h)
clabel(C,h,v)
clabel(C,h,'manual')
clabel(C)
clabel(C,v)
clabel(C,'manual')
text_handles = clabel(...)
clabel(...,'PropertyName',propertyvalue,...)
clabel(...'LabelSpacing',points)

Description The clabel function adds height labels to a 2-D contour plot.

clabel(C,h) rotates the labels and inserts them in the contour lines.
The function inserts only those labels that fit within the contour,
depending on the size of the contour.

clabel(C,h,v) creates labels only for those contour levels given in
vector v, then rotates the labels and inserts them in the contour lines.

clabel(C,h,'manual') places contour labels at locations you select
with a mouse. Press the left mouse button (the mouse button on a
single-button mouse) or the space bar to label a contour at the closest
location beneath the center of the cursor. Press the Return key while
the cursor is within the figure window to terminate labeling. The labels
are rotated and inserted in the contour lines.

clabel(C) adds labels to the current contour plot using the contour
array C output from contour. The function labels all contours displayed
and randomly selects label positions.

clabel(C,v) labels only those contour levels given in vector v.

clabel(C,'manual') places contour labels at locations you select with
a mouse.

text_handles = clabel(...) returns the handles of text objects
created by clabel. The UserData properties of the text objects contain
the contour values displayed. If you call clabel without the h argument,

2-530

clabel

text_handles also contains the handles of line objects used to create
the '+' symbols.

clabel(...,'PropertyName',propertyvalue,...) enables you to
specify text object property/value pairs for the label strings. (See Text
Properties.)

clabel(...'LabelSpacing',points) specifies the spacing between
labels on the same contour line, in units of points (72 points equal one
inch).

Remarks When the syntax includes the argument h, this function rotates the
labels and inserts them in the contour lines (see Examples). Otherwise,
the labels are displayed upright and a '+' indicates which contour line
the label is annotating.

Examples Generate, draw, and label a simple contour plot.

[x,y] = meshgrid(-2:.2:2);
z = x.^exp(-x.^2-y.^2);
[C,h] = contour(x,y,z);
clabel(C,h);

2-531

clabel

Label a contour plot with label spacing set to 72 points (one inch).

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h,'LabelSpacing',72)

2-532

clabel

Label a contour plot with 15 point red text.

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h,'FontSize',15,'Color','r','Rotation',0)

2-533

clabel

Label a contour plot with upright text and '+' symbols indicating which
contour line each label annotates.

[x,y,z] = peaks;
C = contour(x,y,z);
clabel(C)

2-534

clabel

See Also contour, contourc, contourf

“Annotating Plots” on page 1-86 for related functions

“Drawing Text in a Box” for an example that illustrates the use of
contour labels

2-535

class

Purpose Create object or return class of object

Syntax str = class(object)
obj = class(s, 'class_name')
obj = class(s, 'class_name', parent1, parent2, ...)
obj = class(struct([]), 'class_name', parent1, parent2, ...)

Description str = class(object) returns a string specifying the class of object.

The following table lists the object class names that can be returned.
All except the last one are MATLAB classes.

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64-bit unsigned integer array

single Single-precision floating-point number array

double Double-precision floating-point number array

cell Cell array

struct Structure array

function handle Array of values for calling functions indirectly

’class_name’ Custom MATLAB object class or Java class

2-536

class

obj = class(s, 'class_name') creates an object of MATLAB class
'class_name' using structure s as a template. This syntax is valid only
in a function named class_name.m in a directory named @class_name
(where 'class_name' is the same as the string passed in to class).

obj = class(s, 'class_name', parent1, parent2, ...) creates
an object of MATLAB class 'class_name' that inherits the methods
and fields of the parent objects parent1, parent2, and so on. Structure
s is used as a template for the object.

obj = class(struct([]), 'class_name', parent1, parent2,
...) creates an object of MATLAB class 'class_name' that inherits
the methods and fields of the parent objects parent1, parent2, and so
on. Specifying the empty structure struct([]) as the first argument
ensures that the object created contains no fields other than those that
are inherited from the parent objects.

Examples To return in nameStr the name of the class of Java object j,

nameStr = class(j)

To create a user-defined MATLAB object of class polynom,

p = class(p, 'polynom')

See Also inferiorto, isa, superiorto

The “Classes and Objects” and the “Calling Java from MATLAB”
chapters in MATLAB Programming and Data Types documentation.

2-537

clc

Purpose Clear Command Window

GUI
Alternatives

As an alternative to the clc function, select Edit > Clear Command
Window in the MATLAB desktop.

Syntax clc

Description clc clears all input and output from the Command Window display,
giving you a “clean screen.”

After using clc, you cannot use the scroll bar to see the history of
functions, but you still can use the up arrow to recall statements from
the command history.

Examples Use clc in an M-file to always display output in the same starting
position on the screen.

See Also clear, clf, close, home

2-538

clear

Purpose Remove items from workspace, freeing up system memory

Graphical
Interface

As an alternative to the clear function, use Edit > Clear Workspace
in the MATLAB desktop.

Syntax clear
clear name
clear name1 name2 name3 ...
clear global name
clear -regexp expr1 expr2 ...
clear global -regexp expr1 expr2 ...
clear keyword
clear('name1','name2','name3',...)

Description clear removes all variables from the workspace. This frees up system
memory.

clear name removes just the M-file or MEX-file function or variable
name from the workspace. You can use wildcards (*) to remove items
selectively. For example, clear my* removes any variables whose
names begin with the string my. It removes debugging breakpoints in
M-files and reinitializes persistent variables, since the breakpoints for
a function and persistent variables are cleared whenever the M-file is
changed or cleared. If name is global, it is removed from the current
workspace, but left accessible to any functions declaring it global. If
name has been locked by mlock, it remains in memory.

Use a partial path to distinguish between different overloaded
versions of a function. For example, clear polynom/display clears
only the display method for polynom objects, leaving any other
implementations in memory.

clear name1 name2 name3 ... removes name1, name2, and name3
from the workspace.

clear global name removes the global variable name. If name is global,
clear name removes name from the current workspace, but leaves it

2-539

clear

accessible to any functions declaring it global. Use clear global name
to completely remove a global variable.

clear -regexp expr1 expr2 ... clears all variables that match any
of the regular expressions expr1, expr2, etc. This option only clears
variables.

clear global -regexp expr1 expr2 ... clears all global variables
that match any of the regular expressions expr1, expr2, etc.

clear keyword clears the items indicated by keyword.

Keyword Items Cleared

all Removes all variables, functions, and MEX-files
from memory, leaving the workspace empty. Using
clear all removes debugging breakpoints in
M-files and reinitializes persistent variables, since
the breakpoints for a function and persistent
variables are cleared whenever the M-file is
changed or cleared. When issued from the
Command Window prompt, also removes the Java
packages import list.

classes The same as clear all, but also clears MATLAB
class definitions. If any objects exist outside the
workspace (for example, in user data or persistent
variables in a locked M-file), a warning is issued
and the class definition is not cleared. Issue a
clear classes function if the number or names of
fields in a class are changed.

functions Clears all the currently compiled M-functions
and MEX-functions from memory. Using clear
function removes debugging breakpoints in
the function M-file and reinitializes persistent
variables, since the breakpoints for a function and
persistent variables are cleared whenever the
M-file is changed or cleared.

2-540

clear

Keyword Items Cleared

global Clears all global variables from the workspace.

import Removes the Java packages import list. It can only
be issued from the Command Window prompt. It
cannot be used in a function.

java The same as clear all, but also clears the
definitions of all Java classes defined by files on
the Java dynamic class path (see “The Java Class
Path” in the External Interfaces documentation).
If any java objects exist outside the workspace (for
example, in user data or persistent variables in a
locked M-file), a warning is issued and the Java
class definition is not cleared. Issue a clear java
command after modifying any files on the Java
dynamic class path.

variables Clears all variables from the workspace.

clear('name1','name2','name3',...) is the function form of the
syntax. Use this form when the variable name or function name is
stored in a string.

Remarks When you use clear in a function, it has the following effect on items in
your function and base workspaces:

• clear name — If name is the name of a function, the function is
cleared in both the function workspace and in your base workspace.

• clear functions — All functions are cleared in both the function
workspace and in your base workspace.

• clear global — All global variables are cleared in both the function
workspace and in your base workspace.

• clear all — All functions, global variables, and classes are cleared
in both the function workspace and in your base workspace.

2-541

clear

Limitations clear does not affect the amount of memory allocated to the MATLAB
process under UNIX.

The clear function does not clear Simulink models. Use close instead.

Examples Given a workspace containing the following variables

Name Size Bytes Class

c 3x4 1200 cell array
frame 1x1 java.awt.Frame
gbl1 1x1 8 double array (global)
gbl2 1x1 8 double array (global)
xint 1x1 1 int8 array

you can clear a single variable, xint, by typing

clear xint

To clear all global variables, type

clear global
whos

Name Size Bytes Class

c 3x4 1200 cell array
frame 1x1 java.awt.Frame

Using regular expressions, clear those variables with names that begin
with Mon, Tue, or Wed:

clear('-regexp', '^Mon|^Tue|^Wed');

To clear all compiled M- and MEX-functions from memory, type clear
functions. In the case shown below, clear functions was unable to
clear one M-file function from memory, testfun, because the function is
locked.

clear functions % Attempt to clear all functions.

2-542

clear

inmem

ans =
'testfun' % One M-file function remains in memory.

mislocked testfun
ans =

1 % This function is locked in memory.

Once you unlock the function from memory, you can clear it.

munlock testfun
clear functions

inmem
ans =

Empty cell array: 0-by-1

See Also clc, close, import, inmem, load, mlock, munlock, pack, persistent,
save, who, whos, workspace

2-543

clear (serial)

Purpose Remove serial port object from MATLAB workspace

Syntax clear obj

Arguments obj A serial port object or an array of serial port objects.

Description clear obj removes obj from the MATLAB workspace.

Remarks If obj is connected to the device and it is cleared from the workspace,
then obj remains connected to the device. You can restore obj to the
workspace with the instrfind function. A serial port object connected
to the device has a Status property value of open.

To disconnect obj from the device, use the fclose function. To remove
obj from memory, use the delete function. You should remove invalid
serial port objects from the workspace with clear.

Example This example creates the serial port object s, copies s to a new variable
scopy, and clears s from the MATLAB workspace. s is then restored to
the workspace with instrfind and is shown to be identical to scopy.

s = serial('COM1');
scopy = s;
clear s
s = instrfind;
isequal(scopy,s)
ans =

1

See Also Functions

delete, fclose, instrfind, isvalid

Properties

Status

2-544

clf

Purpose Clear current figure window

GUI
Alternatives

Use Clear Figure from the figure window’s File menu to clear the
contents of a figure. You can also create a desktop shortcut to clear
the current figure with one mouse click. See “Shortcuts for MATLAB
— Easily Run a Group of Statements” in the MATLAB Desktop
Environment documentation.

Syntax clf('reset')
clf(fig)
clf(fig,'reset')
figure_handle = clf(...)

Description clf deletes from the current figure all graphics objects whose handles
are not hidden (i.e., their HandleVisibility property is set to on).

clf('reset') deletes from the current figure all graphics objects
regardless of the setting of their HandleVisibility property and resets
all figure properties except Position, Units, PaperPosition, and
PaperUnits to their default values.

clf(fig) or clf(fig,'reset') clears the single figure with handle fig.

figure_handle = clf(...) returns the handle of the figure. This
is useful when the figure IntegerHandle property is off because the
noninteger handle becomes invalid when the reset option is used (i.e.,
IntegerHandle is reset to on, which is the default).

Remarks The clf command behaves the same way when issued on the command
line as it does in callback routines — it does not recognize the
HandleVisibility setting of callback. This means that when issued
from within a callback routine, clf deletes only those objects whose
HandleVisibility property is set to on.

See Also cla, clc, hold, reset

“Figure Windows” on page 1-94 for related functions

2-545

clipboard

Purpose Copy and paste strings to and from system clipboard

Graphical
Interface

As an alternative to clipboard, use the Import Wizard. To use
the Import Wizard to copy data from the clipboard, select Paste to
Workspace from the Edit menu.

Syntax clipboard('copy', data)
str = clipboard('paste')
data = clipboard('pastespecial')

Description clipboard('copy', data) sets the clipboard contents to data. If data
is not a character array, the clipboard uses mat2str to convert it to
a string.

str = clipboard('paste') returns the current contents of the
clipboard as a string or as an empty string (' '), if the current clipboard
contents cannot be converted to a string.

data = clipboard('pastespecial') returns the current contents of
the clipboard as an array using uiimport.

Note Requires an active X display on UNIX, and Java elsewhere.

See Also load, uiimport

2-546

clock

Purpose Current time as date vector

Syntax c = clock

Description c = clock returns a 6-element date vector containing the current date
and time in decimal form:

c = [year month day hour minute seconds]

The first five elements are integers. The seconds element is accurate
to several digits beyond the decimal point. The statement fix(clock)
rounds to integer display format.

Remarks When timing the duration of an event, use the tic and toc functions
instead of clock or etime. These latter two functions are based on the
system time which can be adjusted periodically by the operating system
and thus might not be reliable in time comparison operations.

See Also cputime, datenum, datevec, etime, tic, toc

2-547

close

Purpose Remove specified figure

Syntax close
close(h)
close name
close all
close all hidden
status = close(...)

Description close deletes the current figure or the specified figure(s). It optionally
returns the status of the close operation.

close deletes the current figure (equivalent to close(gcf)).

close(h) deletes the figure identified by h. If h is a vector or matrix,
clse deletes all figures identified by h.

close name deletes the figure with the specified name.

close all deletes all figures whose handles are not hidden.

close all hidden deletes all figures including those with hidden
handles.

status = close(...) returns 1 if the specified windows have been
deleted and 0 otherwise.

Remarks The close function works by evaluating the specified figure’s
CloseRequestFcn property with the statement

eval(get(h,'CloseRequestFcn'))

The default CloseRequestFcn, closereq, deletes the current figure
using delete(get(0,'CurrentFigure')). If you specify multiple
figure handles, close executes each figure’s CloseRequestFcn in turn.
If MATLAB encounters an error that terminates the execution of a
CloseRequestFcn, the figure is not deleted. Note that using your
computer’s window manager (i.e., the Close menu item) also calls the
figure’s CloseRequestFcn.

2-548

close

If a figure’s handle is hidden (i.e., the figure’s HandleVisibility
property is set to callback or off and the root ShowHiddenHandles
property is set to on), you must specify the hidden option when trying
to access a figure using the all option.

To delete all figures unconditionally, use the statements

set(0,'ShowHiddenHandles','on')
delete(get(0,'Children'))

The delete function does not execute the figure’s CloseRequestFcn; it
simply deletes the specified figure.

The figure CloseRequestFcn allows you to either delay or abort the
closing of a figure once the close function has been issued. For example,
you can display a dialog box to see if the user really wants to delete the
figure or save and clean up before closing.

See Also delete, figure, gcf

The figure HandleVisibility property

The root ShowHiddenHandles property

“Figure Windows” on page 1-94 for related functions

2-549

close (avifile)

Purpose Close Audio/Video Interleaved (AVI) file

Syntax aviobj = close(aviobj)

Description aviobj = close(aviobj) finishes writing and closes the AVI file
associated with aviobj, which is an AVI file object created using the
avifile function.

See Also avifile, addframe, movie2avi

2-550

close (ftp)

Purpose Close connection to FTP server

Syntax close(f)

Description close(f) closes the connection to the FTP server, represented by object
f, which was created using ftp. Be sure to use close after completing
work on the server. If you do not run close, the connection will be
terminated automatically either because of the server’s time-out feature
or by exiting MATLAB.

Examples Connect to the MathWorks FTP server and then disconnect.

tmw=ftp('ftp.mathworks.com');
close(tmw)

See Also ftp

2-551

closereq

Purpose Default figure close request function

Syntax closereq

Description closereq deletes the current figure.

See Also The figure CloseRequestFcn property

“Figure Windows” on page 1-94 for related functions

2-552

cmopts

Purpose Name of source control system

GUI
Alternatives

As an alternative to cmopts, select
File > Preferences > General > Source Control to
view the currently selected source control system.

Syntax cmopts

Description cmopts displays the name of the source control system you selected
using preferences, which is one of the following:

• clearcase (UNIX only)

• customverctrl (UNIX only)

• cvs (UNIX only)

• pvcs (UNIX only, used for PVCS and ChangeMan)

• rcs (UNIX only)

• sourcesafe (Windows only)

If you have not selected a source control system, cmopts displays

none

For more information, see “Specify Source Control System in MATLAB”
for PC platforms, and “Specifying the Source Control System” for
UNIX platforms in the MATLAB Desktop Tools and Development
Environment documentation.

Examples Type

cmopts

and MATLAB returns

ans =
Microsoft Visual SourceSafe

2-553

cmopts

which is the source control system specified in preferences.

See Also checkin, checkout, customverctrl, verctrl

2-554

colamd

Purpose Column approximate minimum degree permutation

Syntax p = colamd(S)

Description p = colamd(S) returns the column approximate minimum degree
permutation vector for the sparse matrix S. For a non-symmetric matrix
S, S(:,p) tends to have sparser LU factors than S. The Cholesky
factorization of S(:,p)' * S(:,p) also tends to be sparser than that
of S'*S.

knobs is a two-element vector. If S is m-by-n, then rows with more
than (knobs(1))*n entries are ignored. Columns with more than
(knobs(2))*m entries are removed prior to ordering, and ordered last in
the output permutation p. If the knobs parameter is not present, then
knobs(1) = knobs(2) = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and
the validity of the matrix S.

stats(1) Number of dense or empty rows ignored by
colamd

stats(2) Number of dense or empty columns ignored by
colamd

stats(3) Number of garbage collections performed on the
internal data structure used by colamd (roughly
of size 2.2*nnz(S) + 4*m + 7*n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or
contains duplicate entries, or 0 if no such
column exists

2-555

colamd

stats(6) Last seen duplicate or out-of-order row index in
the column index given by stats(5), or 0 if no
such row index exists

stats(7) Number of duplicate and out-of-order row
indices

Although, MATLAB built-in functions generate valid sparse matrices,
a user may construct an invalid sparse matrix using the MATLAB C
or Fortran APIs and pass it to colamd. For this reason, colamd verifies
that S is valid:

• If a row index appears two or more times in the same column, colamd
ignores the duplicate entries, continues processing, and provides
information about the duplicate entries in stats(4:7).

• If row indices in a column are out of order, colamd sorts each column
of its internal copy of the matrix S (but does not repair the input
matrix S), continues processing, and provides information about the
out-of-order entries in stats(4:7).

• If S is invalid in any other way, colamd cannot continue. It prints an
error message, and returns no output arguments (p or stats) .

The ordering is followed by a column elimination tree post-ordering.

Note colamd tends to be faster than colmmd and tends to return a
better ordering.

Examples The Harwell-Boeing collection of sparse matrices and the MATLAB
demos directory include a test matrix west0479. It is a matrix of order
479 resulting from a model due to Westerberg of an eight-stage chemical
distillation column. The spy plot shows evidence of the eight stages.
The colamd ordering scrambles this structure.

load west0479

2-556

colamd

A = west0479;
p = colamd(A);
subplot(1,2,1), spy(A,4), title('A')
subplot(1,2,2), spy(A(:,p),4), title('A(:,p)')

Comparing the spy plot of the LU factorization of the original matrix
with that of the reordered matrix shows that minimum degree reduces
the time and storage requirements by better than a factor of 2.8. The
nonzero counts are 16777 and 5904, respectively.

spy(lu(A),4)
spy(lu(A(:,p)),4)

2-557

colamd

See Also colperm, spparms, symamd, symrcm

References [1] The authors of the code for “colamd” are Stefan I. Larimore
and Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,
Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

2-558

http://www.cise.ufl.edu/research/sparse/%0D

colmmd

Purpose Sparse column minimum degree permutation

Syntax p = colmmd(S)

Note colmmd is obsolete and will be removed from a future version
of MATLAB. Use colamd instead.

Description p = colmmd(S) returns the column minimum degree permutation
vector for the sparse matrix S. For a nonsymmetric matrix S, this is
a column permutation p such that S(:,p) tends to have sparser LU
factors than S.

The colmmd permutation is automatically used by \ and / for the
solution of nonsymmetric and symmetric indefinite sparse linear
systems.

Use spparms to change some options and parameters associated with
heuristics in the algorithm.

Algorithm The minimum degree algorithm for symmetric matrices is described in
the review paper by George and Liu [1]. For nonsymmetric matrices,
the MATLAB minimum degree algorithm is new and is described in the
paper by Gilbert, Moler, and Schreiber [2]. It is roughly like symmetric
minimum degree for A'*A, but does not actually form A'*A.

Each stage of the algorithm chooses a vertex in the graph of A'*A of
lowest degree (that is, a column of A having nonzero elements in common
with the fewest other columns), eliminates that vertex, and updates the
remainder of the graph by adding fill (that is, merging rows). If the
input matrix S is of size m-by-n, the columns are all eliminated and the
permutation is complete after n stages. To speed up the process, several
heuristics are used to carry out multiple stages simultaneously.

See Also colamd, colperm, lu, spparms, symamd, symmmd, symrcm

The arithmetic operator \

2-559

colmmd

References [1] George, Alan and Liu, Joseph, “The Evolution of the Minimum
Degree Ordering Algorithm,” SIAM Review, 1989, 31:1-19.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse
Matrices in MATLAB: Design and Implementation,” SIAM Journal on
Matrix Analysis and Applications 13, 1992, pp. 333-356.

2-560

colorbar

Purpose Colorbar showing color scale

GUI
Alternatives

Add a colorbar to a plot with the colorbar tool on the figure toolbar,
or use Insert —> Colorbar from the figure menu. Use the Property
Editor to modify the position, font and other properties of a legend.
. For details, see “Using Plot Edit Mode” in the MATLAB Graphics
documentation.

Syntax colorbar
colorbar(...,'peer',axes_handle)
colorbar(...,'location')
colorbar(...,'PropertyName',propertyvalue)
cbar_axes = colorbar(...)
colorbar(axes_handle)

Description The colorbar function displays the current colormap in the current
figure and resizes the current axes to accommodate the colorbar.

colorbar adds a new vertical colorbar on the right side of the current
axes. If a colorbar exists in that location, colorbar replaces it with a
new one. If a colorbar exists at a nondefault location, it is retained
along with the new colorbar

colorbar(...,'peer',axes_handle) creates a colorbar associated
with the axes axes_handle instead of the current axes.

colorbar(...,'location') adds a colorbar in the specified orientation
with respect to the axes. If a colorbar exists at the location specified,
it is replaced. Any colorbars not occupying the specified location are
retained. Possible values for location are

North Inside plot box near top

South Inside bottom

East Inside right

West Inside left

2-561

colorbar

NorthOutside Outside plot box near top

SouthOutside Outside bottom

EastOutside Outside right

WestOutside Outside left

Using one of the ...Outside values for location ensures that the
colorbar does not overlap the plot, whereas overlaps can occur when you
specify any of the other four values.

colorbar(...,'PropertyName',propertyvalue) specifies property
names and values for the axes object used to create the colorbar. See
axes properties for a description of the properties you can set. The
location property applies only to colorbars and legends, not to axes.

cbar_axes = colorbar(...) returns a handle to the colorbar, which is
an axes graphics object that contains one additional property, Location.

Backward-Compatible Version

h = colorbar('v6',...) creates a colorbar compatible with MATLAB
6.5 and earlier. It returns the handles of patch objects instead of a
colorbar object.

colorbar(axes_handle) adds the colorbar to the axes axes_handle in
the default (right) orientation. As in Version 6 and earlier releases, no
new axes is created.

Remarks You can use colorbar with 2-D and 3-D plots.

Examples Example 1

Display a colorbar beside the axes and use descriptive text strings as
y-tick labels. Note that labels will repeat cyclically when the number
of y-ticks is greater than the number of labels, and not all labels will
appear if there are fewer y-ticks than labels you have specified. Also
note that when colorbars are horizontal, their ticks and labels are
governed by the XTick property rather than the YTick property. For
more information, see “Labeling Colorbar Ticks”.

2-562

colorbar

surf(peaks(30))
colorbar('YTickLabel',...

{'Freezing','Cold','Cool','Neutral',...
'Warm','Hot','Burning','Nuclear'})

Example 2

Display a horizontal colorbar beneath the axes of a filled contour plot:

contourf(peaks(60))
colormap cool
colorbar('location','southoutside')

2-563

colorbar

See Also colormap

“Color Operations” on page 1-97 for related functions

2-564

colordef

Purpose Set default property values to display different color schemes

Syntax colordef white
colordef black
colordef none
colordef(fig,color_option)
h = colordef('new',color_option)

Description colordef enables you to select either a white or black background for
graphics display. It sets axis lines and labels so that they contrast with
the background color.

colordef white sets the axis background color to white, the axis lines
and labels to black, and the figure background color to light gray.

colordef black sets the axis background color to black, the axis lines
and labels to white, and the figure background color to dark gray.

colordef none sets the figure coloring to that used by MATLAB
Version 4. The most noticeable difference is that the axis background
is set to 'none', making the axis background and figure background
colors the same. The figure background color is set to black.

colordef(fig,color_option) sets the color scheme of the figure
identified by the handle fig to one of the color options 'white',
'black', or 'none'. When you use this syntax to apply colordef to an
existing figure, the figure must have no graphic content. If it does, you
should first clear it (via clf) before using this form of the command.

h = colordef('new',color_option) returns the handle to a new
figure created with the specified color options (i.e., 'white', 'black', or
'none'). This form of the command is useful for creating GUIs when
you may want to control the default environment. The figure is created
with 'visible','off' to prevent flashing.

Remarks colordef affects only subsequently drawn figures, not those currently
on the display. This is because colordef works by setting default
property values (on the root or figure level). You can list the currently
set default values on the root level with the statement

2-565

colordef

get(0,'defaults')

You can remove all default values using the reset command:

reset(0)

See the get and reset references pages for more information.

See Also whitebg, clf

“Color Operations” on page 1-97 for related functions

2-566

colormap

Purpose Set and get current colormap

GUI
Alternatives

Select a built-in colormap with the Property Editor. To modify the
current colormap, use the Colormap Editor, accessible from Edit —>
Colormap on the figure menu.

Syntax colormap(map)
colormap('default')
cmap = colormap

Description A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0.
Each row is an RGB vector that defines one color. The kth row of the
colormap defines the kth color, where map(k,:) = [r(k) g(k) b(k)])
specifies the intensity of red, green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in
map are outside the interval [0 1], MATLAB returns the error Colormap
must have values in [0,1].

colormap('default') sets the current colormap to the default
colormap.

cmap = colormap retrieves the current colormap. The values returned
are in the interval [0 1].

Specifying Colormaps

M-files in the color directory generate a number of colormaps. Each
M-file accepts the colormap size as an argument. For example,

colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size,
MATLAB creates a colormap the same size as the current colormap.

Supported Colormaps

MATLAB supports a number of built-in colormaps, illustrated
and described below. In addition to specifying built-in colormaps

2-567

colormap

programmatically, you can use the Colormap menu in the Figure
Properties pane of the Plot Tools GUI to select one interactively.

The named built-in colormaps are the following:

• autumn varies smoothly from red, through orange, to yellow.

• bone is a grayscale colormap with a higher value for the blue
component. This colormap is useful for adding an “electronic” look
to grayscale images.

• colorcube contains as many regularly spaced colors in RGB
colorspace as possible, while attempting to provide more steps of
gray, pure red, pure green, and pure blue.

• cool consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

• copper varies smoothly from black to bright copper.

2-568

colormap

• flag consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.

• gray returns a linear grayscale colormap.

• hot varies smoothly from black through shades of red, orange, and
yellow, to white.

• hsv varies the hue component of the hue-saturation-value color
model. The colors begin with red, pass through yellow, green, cyan,
blue, magenta, and return to red. The colormap is particularly
appropriate for displaying periodic functions. hsv(m) is the same
as hsv2rgb([h ones(m,2)]) where h is the linear ramp, h =
(0:m 1)'/m.

• jet ranges from blue to red, and passes through the colors cyan,
yellow, and orange. It is a variation of the hsv colormap. The jet
colormap is associated with an astrophysical fluid jet simulation
from the National Center for Supercomputer Applications. See the
“Examples” on page 2-569 section.

• lines produces a colormap of colors specified by the axes ColorOrder
property and a shade of gray.

• pink contains pastel shades of pink. The pink colormap provides
sepia tone colorization of grayscale photographs.

• prism repeats the six colors red, orange, yellow, green, blue, and
violet.

• spring consists of colors that are shades of magenta and yellow.

• summer consists of colors that are shades of green and yellow.

• white is an all white monochrome colormap.

• winter consists of colors that are shades of blue and green.

Examples The images and colormaps demo, imagedemo, provides an introduction
to colormaps. Select Color Spiral from the menu. This uses the pcolor
function to display a 16-by-16 matrix whose elements vary from 0 to 255
in a rectilinear spiral. The hsv colormap starts with red in the center,

2-569

colormap

then passes through yellow, green, cyan, blue, and magenta before
returning to red at the outside end of the spiral. Selecting Colormap
Menu gives access to a number of other colormaps.

The rgbplot function plots colormap values. Try rgbplot(hsv),
rgbplot(gray), and rgbplot(hot).

The following commands display the flujet data using the jet
colormap.

load flujet
image(X)
colormap(jet)

The demos directory contains a CAT scan image of a human spine. To
view the image, type the following commands:

load spine
image(X)

2-570

colormap

colormap bone

Algorithm Each figure has its own Colormap property. colormap is an M-file that
sets and gets this property.

See Also brighten, caxis, colormapeditor, colorbar, contrast, hsv2rgb,
pcolor, rgb2hsv, rgbplot

The Colormap property of figure graphics objects

“Color Operations” on page 1-97 for related functions

“Coloring Mesh and Surface Plots” for more information about
colormaps and other coloring methods

2-571

colormapeditor

Purpose Start colormap editor

Syntax colormapeditor

Description colormapeditor displays the current figure’s colormap as a strip of
rectangular cells in the colormap editor. Node pointers are colored cells
below the colormap strip that indicate points in the colormap where
the rate of the variation of R, G, and B values changes. You can also
work in the HSV colorspace by setting the Interpolating Colorspace
selector to HSV.

You can also start the colormap editor by selecting Colormap from
the Edit menu.

Node Pointer Operations

You can select and move node pointers to change a range of colors in
the colormap. The color of a node pointer remains constant as you move
it, but the colormap changes by linearly interpolating the RGB values
between nodes.

Change the color at a node by double-clicking the node pointer.
MATLAB displays a color picker from which you can select a new color.
After you select a new color at a node, MATLAB reinterpolates the
colors in between nodes.

Operation How to Perform

Add a node Click below the corresponding cell in
the colormap strip.

Select a node Left-click the node.

Select multiple nodes Adjacent: left-click first node,
Shift+click the last node.

Nonadjacent: left-click first node,
Ctrl+click subsequent nodes.

2-572

colormapeditor

Operation How to Perform

Move a node Select and drag with the mouse or
select and use the left and right arrow
keys.

Move multiple nodes Select multiple nodes and use the left
and right arrow keys to move nodes as
a group. Movement stops when one of
the selected nodes hits an unselected
node or an end node.

Delete a node Select the node and then press the
Delete key, or select Delete from the
Edit menu, or type Ctrl+x.

Delete multiple nodes Select the nodes and then press the
Delete key, or select Delete from the
Edit menu, or type Ctrl+x.

Display color picker for a
node

Double-click the node pointer.

Current Color Info

When you put the mouse over a color cell or node pointer, the colormap
editor displays the following information about that colormap element:

• The element’s index in the colormap

• The value from the graphics object color data that is mapped to the
node’s color (i.e., data from the CData property of any image, patch,
or surface objects in the figure)

• The color’s RGB and HSV color value

2-573

colormapeditor

Interpolating Colorspace

The colorspace determines what values are used to calculate the colors
of cells between nodes. For example, in the RGB colorspace, internode
colors are calculated by linearly interpolating the red, green, and blue
intensity values from one node to the next. Switching to the HSV
colorspace causes the colormap editor to recalculate the colors between
nodes using the hue, saturation, and value components of the color
definition.

Note that when you switch from one colorspace to another, the color
editor preserves the number, color, and location of the node pointers,
which can cause the colormap to change.

2-574

colormapeditor

Interpolating in HSV. Since hue is conceptually mapped about a
color circle, the interpolation between hue values can be ambiguous.
To minimize this ambiguity, the interpolation uses the shortest
distance around the circle. For example, interpolating between
two nodes, one with hue of 2 (slightly orange red) and another
with a hue of 356 (slightly magenta red), does not result in hues
3,4,5...353,354,355 (orange/red-yellow-green-cyan-blue-magenta/red).
Taking the shortest distance around the circle gives 357,358,1,2
(orange/red-red-magenta/red).

Color Data Min and Max

The Color Data Min and Color Data Max text fields enable you to
specify values for the axes CLim property. These values change the
mapping of object color data (the CData property of images, patches, and
surfaces) to the colormap. See “Axes Color Limits — the CLim Property”
for discussion and examples of how to use this property.

Examples This example modifies a default MATLAB colormap so that ranges of
data values are displayed in specific ranges of color. The graph is a slice
plane illustrating a cross section of fluid flow through a jet nozzle. See
the slice reference page for more information on this type of graph.

Example Objectives

The objectives are as follows:

• Regions of flow from left to right (positive data) are mapped to colors
from yellow through orange to dark red. Yellow is slowest and dark
red is the fastest moving fluid.

• Regions that have a speed close to zero are colored green.

• Regions where the fluid is actually moving right to left (negative
data) are shades of blue (darker blue is faster).

The following picture shows the desired coloring of the slice plane. The
colorbar shows the data to color mapping.

2-575

colormapeditor

Running the Example

Note If you are viewing this documentation in the MATLAB help
browser, you can display the graph used in this example by running this
M-file from the MATLAB editor (select Run from the Debug menu).

Initially, the default colormap (jet) colored the slice plane, as illustrated
in the following picture. Note that this example uses a colormap that is
48 elements to display wider bands of color (the default is 64 elements).

2-576

colormapeditor

1 Start the colormap editor using the colormapeditor command. The
color map editor displays the current figure’ s colormap, as shown
in the following picture.

2-577

colormapeditor

2 Since we want the regions of left-to-right flow (positive speed) to
range from yellow to dark red, we can delete the cyan node pointer.
To do this, first select it by clicking with the left mouse button and
press Delete. The colormap now looks like this.

2-578

colormapeditor

The Immediate Apply box is checked, so the graph displays the
results of the changes made to the colormap.

2-579

colormapeditor

3 We want the fluid speed values around zero to stand out, so we need
to find the color cell where the negative-to-positive transition occurs.
Dragging the cursor over the color strip enables you to read the data
values in the Current Color Info panel.

In this case, cell 10 is the first positive value, so we click below that
cell and create a node pointer. Double-clicking the node pointer
displays the color picker. Set the color of this node to green.

2-580

colormapeditor

The graph continues to update to the modified colormap.

2-581

colormapeditor

4 In the current state, the colormap colors are interpolated from the
green node to the yellowish node about 20 cells away. We actually
want only the single cell that is centered around zero to be colored
green. To limit the color green to one cell, move the blue and yellow
node pointers next to the green pointer.

2-582

colormapeditor

5 Before making further adjustments to the colormap, we need to move
the green cell so that it is centered around zero. Use the colorbar to
locate the green cell.

2-583

colormapeditor

To recenter the green cell around zero, select the blue, green, and
yellow node pointers (left-click blue, Shift+click yellow) and move
them as a group using the left arrow key. Watch the colorbar in the
figure window to see when the green color is centered around zero.

2-584

colormapeditor

The slice plane now has the desired range of colors for negative, zero,
and positive data.

2-585

colormapeditor

6 Increase the orange-red coloring in the slice by moving the red node
pointer toward the yellow node.

2-586

colormapeditor

7 Darken the endpoints to bring out more detail in the extremes of the
data. Double-click the end nodes to display the color picker. Set the
red endpoint to the RGB value [50 0 0] and set the blue endpoint to
the RGB value [0 0 50].

The slice plane coloring now matches the example objectives.

2-587

colormapeditor

Saving the Modified Colormap

You can save the modified colormap using the colormap function or the
figure Colormap property.

After you have applied your changes, save the current figure colormap
in a variable:

mycmap = get(fig,'Colormap'); % fig is figure
handle or use gcf

To use this colormap in another figure, set that figure’s Colormap
property:

set(new_fig,'Colormap',mycmap)

To save your modified colormap in a MAT-file, use the save command to
save the mycmap workspace variable:

save('MyColormaps','mycmap')

2-588

colormapeditor

To use your saved colormap in another MATLAB session, load the
variable into the workspace and assign the colormap to the figure:

load('MyColormaps','mycmap')
set(fig,'Colormap',mycmap)

See Also colormap, get, load, save, set

Color Operations for related functions

See “Colormaps” for more information on using MATLAB colormaps.

2-589

ColorSpec

Purpose Color specification

Description ColorSpec is not a function; it refers to the three ways in which you
specify color in MATLAB:

• RGB triple

• Short name

• Long name

The short names and long names are MATLAB strings that specify
one of eight predefined colors. The RGB triple is a three-element row
vector whose elements specify the intensities of the red, green, and blue
components of the color; the intensities must be in the range [0 1]. The
following table lists the predefined colors and their RGB equivalents.

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

Remarks The eight predefined colors and any colors you specify as RGB values
are not part of a figure’s colormap, nor are they affected by changes to
the figure’s colormap. They are referred to as fixed colors, as opposed
to colormap colors.

Some high-level functions (for example, scatter) accept a colorspec as
an input argument and use it to set the CData of graphic objects they

2-590

ColorSpec

create. When using such functions, take care not to specify a colorspec
in a property/value pair that sets CData; values for CData are always
n-length vectors or n-by-3 matrices, where n is the length of XData and
YData, never strings.

Examples To change the background color of a figure to green, specify the color
with a short name, a long name, or an RGB triple. These statements
generate equivalent results:

whitebg('g')
whitebg('green')
whitebg([0 1 0]);

You can use ColorSpec anywhere you need to define a color. For
example, this statement changes the figure background color to pink:

set(gcf,'Color',[1,0.4,0.6])

See Also bar, bar3, colordef, colormap, fill, fill3, whitebg

“Color Operations” on page 1-97 for related functions

2-591

colperm

Purpose Sparse column permutation based on nonzero count

Syntax j = colperm(S)

Description j = colperm(S) generates a permutation vector j such that the
columns of S(:,j) are ordered according to increasing count of nonzero
entries. This is sometimes useful as a preordering for LU factorization;
in this case use lu(S(:,j)).

If S is symmetric, then j = colperm(S) generates a permutation j so
that both the rows and columns of S(j,j) are ordered according to
increasing count of nonzero entries. If S is positive definite, this is
sometimes useful as a preordering for Cholesky factorization; in this
case use chol(S(j,j)).

Algorithm The algorithm involves a sort on the counts of nonzeros in each column.

Examples The n-by-n arrowhead matrix

A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, lu(A), is almost
completely full. The statement

j = colperm(A)

returns j = [2:n 1]. So A(j,j) sends the full row and column to the
bottom and the rear, and lu(A(j,j)) has the same nonzero structure
as A itself.

On the other hand, the Bucky ball example,

B = bucky

has exactly three nonzero elements in each row and column, so j
= colperm(B) is the identity permutation and is no help at all for
reducing fill-in with subsequent factorizations.

2-592

colperm

See Also chol, colamd, lu, spparms, symamd, symrcm

2-593

comet

Purpose 2-D comet plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax comet(y)
comet(x,y)
comet(x,y,p)
comet(axes_handle,...)

Description A comet graph is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

comet(y) displays a comet graph of the vector y.

comet(x,y) displays a comet graph of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults
to 0.1.

comet(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

Remarks The trace left by comet is created by using an EraseMode of none, which
means you cannot print the graph (you get only the comet head), and it
disappears if you cause a redraw (e.g., by resizing the window).

2-594

comet

Examples Create a simple comet graph:

t = 0:.01:2*pi;
x = cos(2*t).*(cos(t).^2);
y = sin(2*t).*(sin(t).^2);
comet(x,y);

See Also comet3

“Direction and Velocity Plots” on page 1-88 for related functions

2-595

comet3

Purpose 3-D comet plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax comet3(z)
comet3(x,y,z)
comet3(x,y,z,p)
comet3(axes_handle,...)

Description A comet plot is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

comet3(z) displays a 3-D comet graph of the vector z.

comet3(x,y,z) displays a comet graph of the curve through the points
[x(i),y(i),z(i)].

comet3(x,y,z,p) specifies a comet body of length p*length(y).

comet3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

Remarks The trace left by comet3 is created by using an EraseMode of none,
which means you cannot print the graph (you get only the comet head),
and it disappears if you cause a redraw (e.g., by resizing the window).

2-596

comet3

Examples Create a 3-D comet graph.

t = -10*pi:pi/250:10*pi;
comet3((cos(2*t).^2).*sin(t),(sin(2*t).^2).*cos(t),t);

See Also comet

“Direction and Velocity Plots” on page 1-88 for related functions

2-597

commandhistory

Purpose Open Command History window, or select it if already open

GUI
Alternatives

As an alternative to commandhistory, select Desktop > Command
History to open it, or Window > Command History to select it.

Syntax commandhistory

Description commandhistory opens the MATLAB Command History window when
it is closed, and selects the Command History window when it is open.
The Command History window presents a log of the statements most
recently run in the Command Window.

See Also diary, prefdir, startup

MATLAB Desktop Tools and Development Environment Documentation

• “Recalling Previous Lines”

• “Command History”

2-598

commandwindow

Purpose Open Command Window, or select it if already open

GUI
Alternatives

As an alternative to commandwindow, select Desktop > Command
Window to open it, or Window > Command Window to select it.

Syntax commandwindow

Description commandwindow opens the MATLAB Command Window when it is
closed, and selects the Command Window when it is open.

Remarks To determine the number of columns and rows that display in the
Command Window, given its current size, use

get(0,'CommandWindowSize')

The number of columns is based on the width of the Command Window.
With the matrix display width preference set to 80 columns, the number
of columns is always 80.

See Also commandhistory, input, inputdlg

MATLAB Desktop Tools and Development Environment documentation

• “Opening and Arranging Tools”

• “Running Functions and Programs, and Entering Variables”

• “Preferences for the Command Window”

2-599

compan

Purpose Companion matrix

Syntax A = compan(u)

Description A = compan(u) returns the corresponding companion matrix whose
first row is -u(2:n)/u(1), where u is a vector of polynomial coefficients.
The eigenvalues of compan(u) are the roots of the polynomial.

Examples The polynomial has a
companion matrix given by

u = [1 0 -7 6]
A = compan(u)
A =

0 7 -6
1 0 0
0 1 0

The eigenvalues are the polynomial roots:

eig(compan(u))

ans =
-3.0000
2.0000
1.0000

This is also roots(u).

See Also eig, poly, polyval, roots

2-600

compass

Purpose Plot arrows emanating from origin

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax compass(U,V)
compass(Z)
compass(...,LineSpec)
compass(axes_handle,...)
h = compass(...)

Description A compass graph displays the vectors with components (U,V) as arrows
emanating from the origin. U, V, and Z are in Cartesian coordinates and
plotted on a circular grid.

compass(U,V) displays a compass graph having n arrows, where n is
the number of elements in U or V. The location of the base of each arrow
is the origin. The location of the tip of each arrow is a point relative to
the base and determined by [U(i),V(i)].

compass(Z) displays a compass graph having n arrows, where n is the
number of elements in Z. The location of the base of each arrow is the
origin. The location of the tip of each arrow is relative to the base as
determined by the real and imaginary components of Z. This syntax is
equivalent to compass(real(Z),imag(Z)).

compass(...,LineSpec) draws a compass graph using the line type,
marker symbol, and color specified by LineSpec.

compass(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

2-601

compass

h = compass(...) returns handles to line objects.

Examples Draw a compass graph of the eigenvalues of a matrix.

Z = eig(randn(20,20));
compass(Z)

See Also feather, LineSpec, quiver, rose

“Direction and Velocity Plots” on page 1-88 for related functions

“Compass Plots” for another example

2-602

complex

Purpose Construct complex data from real and imaginary components

Syntax c = complex(a,b)

Description c = complex(a,b) creates a complex output, c, from the two real
inputs.

c = a + bi

The output is the same size as the inputs, which must be scalars or
equally sized vectors, matrices, or multi-dimensional arrays.

Note If b is all zeros, c is complex and the value of all its imaginary
components is 0. In contrast, the result of the addition a+0i returns a
strictly real result.

The following describes when a and b can have different data types, and
the resulting data type of the output c:

• If either of a or b has type single, c has type single.

• If either of a or b has an integer data type, the other must have the
same integer data type or type scalar double, and c has the same
integer data type.

c = complex(a) for real a returns the complex result c with real part
a and 0 as the value of all imaginary components. Even though the
value of all imaginary components is 0, c is complex and isreal(c)
returns false.

The complex function provides a useful substitute for expressions such
as

a + i*b or a + j*b

2-603

complex

in cases when the names “i” and “j” may be used for other variables
(and do not equal), when a and b are not single or double, or
when b is all zero.

Example Create complex uint8 vector from two real uint8 vectors.

a = uint8([1;2;3;4])
b = uint8([2;2;7;7])
c = complex(a,b)
c =

1.0000 + 2.0000i
2.0000 + 2.0000i
3.0000 + 7.0000i
4.0000 + 7.0000i

See Also abs, angle, conj, i, imag, isreal, j, real

2-604

computer

Purpose Information about computer on which MATLAB is running

Syntax str = computer
[str,maxsize] = computer
[str,maxsize,endian] = computer

Description str = computer returns the string str with the computer type on
which MATLAB is running.

[str,maxsize] = computer returns the integer maxsize, which
contains the maximum number of elements allowed in an array with
this version of MATLAB.

[str,maxsize,endian] = computer also returns either ’L’ for little
endian byte ordering or ’B’ for big endian byte ordering.

The list of supported computers changes as new computers are added
and others become obsolete. A typical list follows.

32–bit Platforms

str Computer ispc isunix

GLNX86 GNU Linux on x86 0 1

MAC Apple Macintosh OS X on PPC 0 1

MACI Apple Macintosh OS X on x86 0 1

PCWIN Microsoft Windows on x86 1 0

64–bit Platforms

str Computer ispc isunix

GLNXA64 GNU Linux on x86_64 0 1

PCWIN64 Microsoft Windows on x64 1 0

SOL64 Sun Solaris on SPARC 0 1

2-605

computer

See Also getenv, setenv, ispc, isunix

2-606

cond

Purpose Condition number with respect to inversion

Syntax c = cond(X)
c = cond(X,p)

Description The condition number of a matrix measures the sensitivity of the
solution of a system of linear equations to errors in the data. It gives
an indication of the accuracy of the results from matrix inversion and
the linear equation solution. Values of cond(X) and cond(X,p) near 1
indicate a well-conditioned matrix.

c = cond(X) returns the 2-norm condition number, the ratio of the
largest singular value of X to the smallest.

c = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p

If p is... Then cond(X,p) returns the...

1 1-norm condition number

2 2-norm condition number

’fro’ Frobenius norm condition number

inf Infinity norm condition number

Algorithm The algorithm for cond (when p = 2) uses the singular value
decomposition, svd.

See Also condeig, condest, norm, normest, rank, rcond, svd

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-607

http://www.netlib.org/lapack/lug/lapack_lug.html

condeig

Purpose Condition number with respect to eigenvalues

Syntax c = condeig(A)
[V,D,s] = condeig(A)

Description c = condeig(A) returns a vector of condition numbers for the
eigenvalues of A. These condition numbers are the reciprocals of the
cosines of the angles between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to

[V,D] = eig(A);
s = condeig(A);

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

See Also balance, cond, eig

2-608

condest

Purpose 1-norm condition number estimate

Syntax c = condest(A)
c = condest(A,t)
[c,v] = condest(A)

Description c = condest(A) computes a lower bound C for the 1-norm condition
number of a square matrix A.

c = condest(A,t) changes t, a positive integer parameter equal to
the number of columns in an underlying iteration matrix. Increasing
the number of columns usually gives a better condition estimate but
increases the cost. The default is t = 2, which almost always gives an
estimate correct to within a factor 2.

[c,v] = condest(A) also computes a vector v which is an
approximate null vector if c is large. v satisfies norm(A*v,1) =
norm(A,1)*norm(v,1)/c.

Note condest invokes rand. If repeatable results are required then
invoke rand('state',j), for some j, before calling this function.

This function is particularly useful for sparse matrices.

Algorithm condest is based on the 1-norm condition estimator of Hager [1] and a
block oriented generalization of Hager’s estimator given by Higham and
Tisseur [2]. The heart of the algorithm involves an iterative search to

estimate without computing . This is posed as the convex,
but nondifferentiable, optimization problem

subject to

See Also cond, norm, normest

2-609

condest

Reference [1] William W. Hager, “Condition Estimates,” SIAM J. Sci. Stat.
Comput. 5, 1984, 311-316, 1984.

[2] Nicholas J. Higham and Françoise Tisseur, “A Block Algorithm
for Matrix 1-Norm Estimation with an Application to 1-Norm
Pseudospectra, “SIAM J. Matrix Anal. Appl., Vol. 21, 1185-1201, 2000.

2-610

coneplot

Purpose Plot velocity vectors as cones in 3-D vector field

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz)
coneplot(U,V,W,Cx,Cy,Cz)
coneplot(...,s)
coneplot(...,color)
coneplot(...,'quiver')
coneplot(...,'method')
coneplot(X,Y,Z,U,V,W,'nointerp')
coneplot(axes_handle,...)
h = coneplot(...)

Description coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) plots velocity vectors as cones
pointing in the direction of the velocity vector and having a length
proportional to the magnitude of the velocity vector.

• X, Y, Z define the coordinates for the vector field.

• U, V, W define the vector field. These arrays must be the same size,
monotonic, and 3-D plaid (such as the data produced by meshgrid).

• Cx, Cy, Cz define the location of the cones in the vector field. The
section “Specifying Starting Points for Stream Plots” in Visualization
Techniques provides more information on defining starting points.

2-611

coneplot

coneplot(U,V,W,Cx,Cy,Cz) (omitting the X, Y, and Z arguments)
assumes [X,Y,Z] = meshgrid(1:n,1:m,1:p), where [m,n,p]=
size(U).

coneplot(...,s) MATLAB automatically scales the cones to fit the
graph and then stretches them by the scale factor s. If you do not
specify a value for s, MATLAB uses a value of 1. Use s = 0 to plot the
cones without automatic scaling.

coneplot(...,color) interpolates the array color onto the vector
field and then colors the cones according to the interpolated values. The
size of the color array must be the same size as the U, V, W arrays. This
option works only with cones (i.e., not with the quiver option).

coneplot(...,'quiver') draws arrows instead of cones (see quiver3
for an illustration of a quiver plot).

coneplot(...,'method') specifies the interpolation method to use.
method can be linear, cubic, or nearest. linear is the default. (See
interp3 for a discussion of these interpolation methods.)

coneplot(X,Y,Z,U,V,W,'nointerp') does not interpolate the positions
of the cones into the volume. The cones are drawn at positions defined
by X, Y, Z and are oriented according to U, V, W. Arrays X, Y, Z, U, V, W
must all be the same size.

coneplot(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = coneplot(...) returns the handle to the patch object used to
draw the cones. You can use the set command to change the properties
of the cones.

Remarks coneplot automatically scales the cones to fit the graph, while keeping
them in proportion to the respective velocity vectors.

It is usually best to set the data aspect ratio of the axes before calling
coneplot. You can set the ratio using the daspect command.

daspect([1,1,1])

2-612

coneplot

Examples This example plots the velocity vector cones for vector volume data
representing the motion of air through a rectangular region of space.
The final graph employs a number of enhancements to visualize the
data more effectively:

• Cone plots indicate the magnitude and direction of the wind velocity.

• Slice planes placed at the limits of the data range provide a visual
context for the cone plots within the volume.

• Directional lighting provides visual cues to the orientation of the
cones.

• View adjustments compose the scene to best reveal the information
content of the data by selecting the view point, projection type, and
magnification.

1. Load and Inspect Data

The winds data set contains six 3-D arrays: u, v, and w specify the
vector components at each of the coordinates specified in x, y, and
z. The coordinates define a lattice grid structure where the data is
sampled within the volume.

It is useful to establish the range of the data to place the slice planes
and to specify where you want the cone plots (min, max).

load wind
xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
ymax = max(y(:));
zmin = min(z(:));

2. Create the Cone Plot

• Decide where in data space you want to plot cones. This example
selects the full range of x and y in eight steps and the range 3 to 15 in
four steps in z (linspace, meshgrid).

2-613

coneplot

• Use daspect to set the data aspect ratio of the axes before calling
coneplot so MATLAB can determine the proper size of the cones.

• Draw the cones, setting the scale factor to 5 to make the cones larger
than the default size.

• Set the coloring of each cone (FaceColor, EdgeColor).

daspect([2,2,1])
xrange = linspace(xmin,xmax,8);
yrange = linspace(ymin,ymax,8);
zrange = 3:4:15;
[cx cy cz] = meshgrid(xrange,yrange,zrange);
hcones = coneplot(x,y,z,u,v,w,cx,cy,cz,5);
set(hcones,'FaceColor','red','EdgeColor','none')

3. Add the Slice Planes

• Calculate the magnitude of the vector field (which represents wind
speed) to generate scalar data for the slice command.

• Create slice planes along the x-axis at xmin and xmax, along the
y-axis at ymax, and along the z-axis at zmin.

• Specify interpolated face color so the slice coloring indicates wind
speed, and do not draw edges (hold, slice, FaceColor, EdgeColor).

hold on
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')
hold off

4. Define the View

• Use the axis command to set the axis limits equal to the range of
the data.

• Orient the view to azimuth = 30 and elevation = 40. (rotate3d is a
useful command for selecting the best view.)

2-614

coneplot

• Select perspective projection to provide a more realistic looking
volume (camproj).

• Zoom in on the scene a little to make the plot as large as possible
(camzoom).

axis tight; view(30,40); axis off
camproj perspective; camzoom(1.5)

5. Add Lighting to the Scene

The light source affects both the slice planes (surfaces) and the cone
plots (patches). However, you can set the lighting characteristics of
each independently:

• Add a light source to the right of the camera and use Phong lighting
to give the cones and slice planes a smooth, three-dimensional
appearance (camlight, lighting).

• Increase the value of the AmbientStrength property for each slice
plane to improve the visibility of the dark blue colors. (Note that
you can also specify a different colormap to change the coloring of
the slice planes.)

• Increase the value of the DiffuseStrength property of the cones to
brighten particularly those cones not showing specular reflections.

camlight right; lighting phong
set(hsurfaces,'AmbientStrength',.6)
set(hcones,'DiffuseStrength',.8)

2-615

coneplot

See Also isosurface, patch, reducevolume, smooth3, streamline, stream2,
stream3, subvolume

“Volume Visualization” on page 1-101 for related functions

2-616

conj

Purpose Complex conjugate

Syntax ZC = conj(Z)

Description ZC = conj(Z) returns the complex conjugate of the elements of Z.

Algorithm If Z is a complex array:

conj(Z) = real(Z) - i*imag(Z)

See Also i, j, imag, real

2-617

continue

Purpose Pass control to next iteration of for or while loop

Syntax continue

Description continue passes control to the next iteration of the for or while loop
in which it appears, skipping any remaining statements in the body
of the loop.

In nested loops, continue passes control to the next iteration of the for
or while loop enclosing it.

Examples The example below shows a continue loop that counts the lines of
code in the file magic.m, skipping all blank lines and comments. A
continue statement is used to advance to the next line in magic.m
without incrementing the count whenever a blank line or comment
line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) | strncmp(line,'%',1)

continue
end
count = count + 1;

end
disp(sprintf('%d lines',count));

See Also for, while, end, break, return

2-618

contour

Purpose Contour plot of matrix

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools documentation.

Syntax contour(Z)
contour(Z,n)
contour(Z,v)
contour(X,Y,Z)
contour(X,Y,Z,n)
contour(X,Y,Z,v)
contour(...,LineSpec)
contour(ax,...)
[C,h] = contour(...)
[C,h] = contour('v6',...)

Description A contour plot displays isolines of matrix Z. Label the contour lines
using clabel.

contour(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to the x-y plane. Z must be at least a 2-by-2 matrix
that contains at least two different values. The number of contour levels
and the values of the contour levels are chosen automatically based on
the minimum and maximum values of Z. The ranges of the x- and y-axis
are [1:n] and [1:m], where [m,n] = size(Z).

contour(Z,n) draws a contour plot of matrix Z with n contour levels.

contour(Z,v) draws a contour plot of matrix Z with contour lines at the
data values specified in vector v. The number of contour levels is equal

2-619

contour

to length(v). To draw a single contour of level i, use contour(Z,[i
i]).

contour(X,Y,Z), contour(X,Y,Z,n), and contour(X,Y,Z,v) draw
contour plots of Z. X and Y specify the x- and y-axis limits. When X and
Y are matrices, they must be the same size as Z, in which case they
specify a surface, as defined by the surf function. X and Y must be
monotonically increasing.

If X or Y is irregularly spaced, contour calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

contour(...,LineSpec) draws the contours using the line type and
color specified by LineSpec. contour ignores marker symbols.

contour(ax,...) plots into axes ax instead of gca.

[C,h] = contour(...) returns a contour matrix, C, derived from the
matrix returned by the low-level contourc function, and a handle, h, to
a contourgroup object. clabel uses the contour matrix C to create the
labels. (See descriptions of contourgroup properties.)

Backward Compatible Version

[C,h] = contour('v6',...) returns the contour matrix C (see
contourc) and a vector of handles, h, to graphics objects. clabel uses
the contour matrix C to create the labels. When called with the 'v6' flag,
contour creates patch graphics objects, unless you specify a LineSpec,
in which case contour creates line graphics objects. In this case, contour
lines are not mapped to colors in the figure colormap, but are colored
using the colors defined in the axes ColorOrder property. If you do not
specify a LineSpec argument, the figure colormap (colormap) and the
color limits (caxis) control the color of the contour lines (patch objects).

See “Plot Objects and Backward Compatibility” for more information.

Remarks Use contourgroup object properties to control the contour plot
appearance.

The following diagram illustrates the parent-child relationship in
contour plots.

2-620

contour

Examples Contour Plot of a Function

To view a contour plot of the function

over the range -2 ≤ x ≤ 2, -2 ≤ y ≤ 3, create matrix Z using the statements

[X,Y] = meshgrid(-2:.2:2,-2:.2:3);
Z = X.*exp(-X.^2-Y.^2);

Then, generate a contour plot of Z.

• Display contour labels by setting the ShowText property to on.

• Label every other contour line by setting the TextStep property to
twice the contour interval (i.e., two times the LevelStep property).

• Use a smoothly varying colormap.

2-621

contour

[C,h] = contour(X,Y,Z);
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)
colormap cool

Smoothing Contour Data

Use interp2 to create smoother contours. Also set the contour label
text BackgroundColor to a light yellow and the EdgeColor to light gray.

Z = peaks;
[C,h] = contour(interp2(Z,4));
text_handle = clabel(C,h);
set(text_handle,'BackgroundColor',[1 1 .6],...

'Edgecolor',[.7 .7 .7])

2-622

contour

Setting the Axis Limits on Contour Plots

Suppose, for example, your data represents a region that is 1000
meters in the x dimension and 3000 meters in the y dimension. Use the
following statements to set the axis limits correctly:

Z = rand(24,36); % assume data is a 24-by-36 matrix
X = linspace(0,1000,size(Z,2));
Y = linspace(0,3000,size(Z,1));
[c,h] = contour(X,Y,Z);
axis equal tight % set the axes aspect ratio

See Also contour3, contourc, contourf, contourslice

See Contourgroup Properties for property descriptions.

2-623

contour3

Purpose 3-D contour plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools documentation.

Syntax contour3(Z)
contour3(Z,n)
contour3(Z,v)
contour3(X,Y,Z)
contour3(X,Y,Z,n)
contour3(X,Y,Z,v)
contour3(...,LineSpec)
contour3(axes_handle,...)
[C,h] = contour3(...)

Description contour3 creates a 3-D contour plot of a surface defined on a
rectangular grid.

contour3(Z) draws a contour plot of matrix Z in a 3-D view. Z is
interpreted as heights with respect to the x-y plane. Z must be at least a
2-by-2 matrix that contains at least two different values. The number of
contour levels and the values of contour levels are chosen automatically.
The ranges of the x- and y-axis are [1:n] and [1:m], where [m,n] =
size(Z).

contour3(Z,n) draws a contour plot of matrix Z with n contour levels in
a 3-D view.

contour3(Z,v) draws a contour plot of matrix Z with contour lines at
the values specified in vector v. The number of contour levels is equal to
length(v). To draw a single contour of level i, use contour(Z,[i i]).

2-624

contour3

contour3(X,Y,Z), contour3(X,Y,Z,n), and contour3(X,Y,Z,v) use X
and Y to define the x- and y-axis limits. If X is a matrix, X(1,:) defines
the x-axis. If Y is a matrix, Y(:,1) defines the y-axis. When X and Y are
matrices, they must be the same size as Z, in which case they specify a
surface as surf does.

contour3(...,LineSpec) draws the contours using the line type and
color specified by LineSpec.

contour3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

[C,h] = contour3(...) returns the contour matrix C, as described in
the function contourc and a column vector h, containing handles to
graphics objects. contour3 creates patch graphics objects unless you
specify LineSpec, in which case contour3 creates line graphics objects.

Remarks If X or Y is irregularly spaced, contour3 calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

If you do not specify LineSpec, colormap and caxis control the color.

contour3(...) works the same as contour(...) with these
exceptions:

• The contours are drawn at their corresponding Z level.

• Multiple patch objects are created instead of a contourgroup.

• Calling contour3 with trailing property-value pairs is not allowed.

Examples Plot the three-dimensional contour of a function and superimpose a
surface plot to enhance visualization of the function.

[X,Y] = meshgrid([-2:.25:2]);
Z = X.*exp(-X.^2-Y.^2);
contour3(X,Y,Z,30)
surface(X,Y,Z,'EdgeColor',[.8 .8 .8],'FaceColor','none')
grid off
view(-15,25)

2-625

contour3

colormap cool

See Also contour, contourc, meshc, meshgrid, surfc

“Contour Plots” on page 1-88 category for related functions

“Contour Plots” section for more examples

2-626

contourc

Purpose Low-level contour plot computation

Syntax C = contourc(Z)
C = contourc(Z,n)
C = contourc(Z,v)
C = contourc(x,y,Z)
C = contourc(x,y,Z,n)
C = contourc(x,y,Z,v)

Description contourc calculates the contour matrix C used by contour, contour3,
and contourf. The values in Z determine the heights of the contour
lines with respect to a plane. The contour calculations use a regularly
spaced grid determined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix Z,
where Z must be at least a 2-by-2 matrix. The contours are isolines
in the units of Z. The number of contour lines and the corresponding
values of the contour lines are chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour
levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines
at the values specified in vector v. The length of v determines the
number of contour levels. To compute a single contour of level i, use
contourc(Z,[i i]).

C = contourc(x,y,Z), C = contourc(x,y,Z,n), and C =
contourc(x,y,Z,v) compute contours of Z using vectors x and y to
determine the x- and y-axis limits. x and y must be monotonically
increasing.

Remarks C is a two-row matrix specifying all the contour lines. Each contour
line defined in matrix C begins with a column that contains the value
of the contour (specified by v and used by clabel), and the number of
(x,y) vertices in the contour line. The remaining columns contain the
data for the (x,y) pairs.

C = [value1xdata(1)xdata(2)..value2xdata(1)xdata(2)...;

2-627

contourc

dim1ydata(1)ydata(2)...dim2 ydata(1)ydata(2)...]

Specifying irregularly spaced x and y vectors is not the same as
contouring irregularly spaced data. If x or y is irregularly spaced,
contourc calculates contours using a regularly spaced contour grid,
then transforms the data to x or y.

See Also clabel, contour, contour3, contourf

“Contour Plots” on page 1-88 for related functions

“The Contouring Algorithm” for more information

2-628

contourf

Purpose Filled 2-D contour plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools documentation.

Syntax contourf(Z)
contourf(Z,n)
contourf(Z,v)
contourf(X,Y,Z)
contourf(X,Y,Z,n)
contourf(X,Y,Z,v)
contourf(axes_handle,...)
C = contourf(...)
[C,h] = contourf(...)
[C,h,CF] = contourf(...)

Description A filled contour plot displays isolines calculated from matrix Z and fills
the areas between the isolines using constant colors. The color of the
filled areas depends on the current figure’s colormap. NaNs in the Z-data
leave white holes with black borders in the contour plot. The function
creates and optionally returns a handle to a Contourgroup Properties
object containing the filled contours.

contourf(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to a plane. Z must be at least a 2-by-2 matrix that
contains at least two different values. The number of contour lines and
the values of the contour lines are chosen automatically.

contourf(Z,n) draws a contour plot of matrix Z with n contour levels.

2-629

contourf

contourf(Z,v) draws a contour plot of matrix Z with contour levels
at the values specified in vector v. When you use the contourf(Z,v)
syntax to specify a vector of contour levels (v must increase
monotonically), contour regions with Z-values less than v(1) are not
filled (they are rendered in white). To fill such regions with a color,
make v(1) less than or equal to the minimum Z-data value.

contourf(X,Y,Z), contourf(X,Y,Z,n), and contourf(X,Y,Z,v)
produce contour plots of Z using X and Y to determine the x- and y-axis
limits. When X and Y are matrices, they must be the same size as Z,
in which case they specify a surface as surf does. X and Y must be
monotonically increasing.

contourf(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

C = contourf(...) returns the contour matrix C as calculated by the
function contourc and used by clabel.

[C,h] = contourf(...) also returns a handle h for the contourgroup
object.

Backward-Compatible Version

[C,h,CF] = contourf(...) returns the contour matrix C as calculated
by the function contourc and used by clabel, a vector of handles
h to patch graphics objects (instead of a contourgroup object, for
compatibility with MATLAB 6.5 and earlier) and a contour matrix CF
for the filled areas.

Remarks If X or Y is irregularly spaced, contourf calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

Examples Create a filled contour plot of the peaks function.

[C,h] = contourf(peaks(20),10);
colormap autumn

2-630

contourf

See Also clabel, contour, contour3, contourc, quiver

“Contour Plots” on page 1-88 for related functions

2-631

Contourgroup Properties

Purpose Define contourgroup properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for contourgroup objects.

See “Plot Objects” for more information on contourgroup objects.

Contourgroup
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

2-632

Contourgroup Properties

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

2-633

Contourgroup Properties

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

ContourMatrix
2-by-n matrix Read Only

A two-row matrix specifying all the contour lines. Each contour
line defined in the ContourMatrix begins with a column that
contains the value of the contour (specified by the LevelList
property and is used by clabel), and the number of (x,y) vertices
in the contour line. The remaining columns contain the data for
the (x,y) pairs:

C = [value1 xdata(1) xdata(2)...value2 xdata(1) xdata(2)...;
dim1 ydata(1) ydata(2)... dim2 ydata(1) ydata(2)...]

That is,

C = [C(1) C(2)...C(I)...C(N)]

where N is the number of contour levels, and

C(i) = [level(i) x(1) x(2)...x(numel(i));

2-634

Contourgroup Properties

numel(i) y(1) y(2)...y(numel(i))];

For further information, see The Contouring Algorithm.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

2-635

Contourgroup Properties

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string

Label used by plot legends. The legend function, the figure’s
active legend, and the plot browser use this text when displaying
labels for this object.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing

2-636

Contourgroup Properties

the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

Fill
{off} | on

Color spaces between contour lines. By default, contour draws
only the contour lines of the surface. If you set Fill to on, contour
colors the regions in between the contour lines according to the
Z-value of the region and changes the contour lines to black.

2-637

Contourgroup Properties

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in

2-638

Contourgroup Properties

the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

2-639

Contourgroup Properties

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LabelSpacing
distance in points (default = 144)

Spacing between labels on each contour line. When you display
contour line labels using either the ShowText property or the
clabel command, the labels are spaced 144 points (2 inches)
apart on each line. You can specify the spacing by setting the

2-640

Contourgroup Properties

LabelSpacing property to a value in points. If the length of an
individual contour line is less than the specified value, MATLAB
displays only one contour label on that line.

LevelList
vector of ZData-values

Values at which contour lines are drawn. When the LevelListMode
property is auto, the contour function automatically chooses
contour values that span the range of values in ZData (the input
argument Z). You can set this property to the values at which
you want contour lines drawn.

To specify the contour interval (space between contour lines) use
the LevelStep property.

LevelListMode
{auto} | manual

User-specified or autogenerated LevelList values. By default, the
contour function automatically generates the values at which
contours are drawn. If you set this property to manual, contour
does not change the values in LevelList as you change the values
of ZData.

LevelStep
scalar

Spacing of contour lines. The contour function draws contour
lines at regular intervals determined by the value of LevelStep.
When the LevelStepMode property is set to auto, contour
determines the contour interval automatically based on the ZData.

LevelStepMode
{auto} | manual

User-specified or autogenerated LevelStep values. By default,
the contour function automatically determines a value for the
LevelStep property. If you set this property to manual, contour

2-641

Contourgroup Properties

does not change the value of LevelStep as you change the values
of ZData.

LineColor
{auto} | ColorSpec | none

Color of the contour lines. This property determines how MATLAB
colors the contour lines.

• auto— Each contour line is a single color determined by its
contour value, the figure colormap, and the color axis (caxis).

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for
edges. The default edge color is black. See ColorSpec for more
information on specifying color.

• none — No contour lines are drawn.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

2-642

Contourgroup Properties

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

ShowText
on | {off}

2-643

Contourgroup Properties

Display labels on contour lines. When you set this property to
on, MATLAB displays text labels on each contour line indicating
the contour value. See also LevelList, clabel, and the example
“Contour Plot of a Function” on page 2-621.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

TextList
vector of contour values

Contour values to label. This property contains the contour values
where text labels are placed. By default, these values are the
same as those contained in the LevelList property, which define
where the contour lines are drawn. Note that there must be an
equivalent contour line to display a text label.

For example, the following statements create and label a contour
plot:

2-644

Contourgroup Properties

[c,h]=contour(peaks);
clabel(c,h)

You can get the LevelList property to see the contour line values:

get(h,'LevelList')

Suppose you want to view the contour value 4.375 instead of the
value of 4 that the contour function used. To do this, you need to
set both the LevelList and TextList properties:

set(h,'LevelList',[-6 -4 -2 0 2 4.375 6 8],...
'TextList',[-6 -4 -2 0 2 4.375 6 8])

See the example “Contour Plot of a Function” on page 2-621 for
additional information.

TextListMode
{auto} | manual

User-specified or auto TextList values. When this property is set
to auto, MATLAB sets the TextList property equal to the values
of the LevelList property (i.e., a text label for each contour line).
When this property is set to manual, MATLAB does not set the
values of the TextList property. Note that specifying values for
the TextList property causes the TextListMode property to be
set to manual.

TextStep
scalar

Determines which contour line have numeric labels. The contour
function labels contour lines at regular intervals which are
determined by the value of the TextStep property. When the
TextStepMode property is set to auto, contour labels every
contour line when the ShowText property is on. See “Contour
Plot of a Function” on page 2-621 for an example that uses the
TextStep property.

2-645

Contourgroup Properties

TextStepMode
{auto} | manual

User-specified or autogenerated TextStep values. By default,
the contour function automatically determines a value for the
TextStep property. If you set this property to manual, contour
does not change the value of TextStep as you change the values of
ZData.

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of graphics object. For contourgroup objects,
Type is ’hggroup’. This statement finds all the hggroup objects in
the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

2-646

Contourgroup Properties

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
vector or matrix

The x-axis values for a graph. The x-axis values for graphs
are specified by the X input argument. If XData is a vector,
length(XData) must equal length(YData) and must be
monotonic. If XData is a matrix, size(XData) must equal
size(YData) and each column must be monotonic.

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped. See
“Setting the Axis Limits on Contour Plots” on page 2-623 for more
information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

2-647

Contourgroup Properties

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Y-axis limits. This property determines the y-axis limits used in
the contour plot. If you do not specify a Y argument, the contour
function calculates y-axis limits based on the size of the input
argument Z.

YData can be either a matrix equal in size to ZData or a vector
equal in length to the number of columns in ZData.

Use YData to define meaningful coordinates for the underlying
surface whose topography is being mapped. See “Setting the Axis
Limits on Contour Plots” on page 2-623 for more information.

2-648

Contourgroup Properties

YDataMode
{auto} | manual

Use automatic or user-specified y-axis values. In auto mode (the
default) the contour function automatically determines the y-axis
limits. If you set this property to manual, specify a value for
YData, or specify a Y argument, then contour sets this property to
manual and does not change the axis limits.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
matrix

2-649

Contourgroup Properties

Contour data. This property contains the data from which the
contour lines are generated (specified as the input argument
Z). ZData must be at least a 2-by-2 matrix. The number of
contour levels and the values of the contour levels are chosen
automatically based on the minimum and maximum values of
ZData. The limits of the x- and y-axis are [1:n] and [1:m], where
[m,n] = size(ZData).

ZDataSource
string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-650

contourslice

Purpose Draw contours in volume slice planes

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax contourslice(X,Y,Z,V,Sx,Sy,Sz)
contourslice(X,Y,Z,V,Xi,Yi,Zi)
contourslice(V,Sx,Sy,Sz)
contourslice(V,Xi,Yi,Zi)
contourslice(...,n)
contourslice(...,cvals)
contourslice(...,[cv cv])
contourslice(...,'method')
contourslice(axes_handle,...)
h = contourslice(...)

Description contourslice(X,Y,Z,V,Sx,Sy,Sz) draws contours in the x-, y-, and
z-axis aligned planes at the points in the vectors Sx, Sy, Sz. The
arrays X, Y, and Z define the coordinates for the volume V and must
be monotonic and 3-D plaid (such as the data produced by meshgrid).
The color at each contour is determined by the volume V, which must
be an m-by-n-by-p volume array.

contourslice(X,Y,Z,V,Xi,Yi,Zi) draws contours through the volume
V along the surface defined by the 2-D arrays Xi,Yi,Zi. The surface
should lie within the bounds of the volume.

contourslice(V,Sx,Sy,Sz) and contourslice(V,Xi,Yi,Zi)
(omitting the X, Y, and Z arguments) assume [X,Y,Z] =
meshgrid(1:n,1:m,1:p), where [m,n,p]= size(v).

2-651

contourslice

contourslice(...,n) draws n contour lines per plane, overriding the
automatic value.

contourslice(...,cvals) draws length(cval) contour lines per
plane at the values specified in vector cvals.

contourslice(...,[cv cv]) computes a single contour per plane at
the level cv.

contourslice(...,'method') specifies the interpolation method to
use. method can be linear, cubic, or nearest. nearest is the default
except when the contours are being drawn along the surface defined
by Xi, Yi, Zi, in which case linear is the default. (See interp3 for a
discussion of these interpolation methods.)

contourslice(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = contourslice(...) returns a vector of handles to patch objects
that are used to implement the contour lines.

Examples This example uses the flow data set to illustrate the use of contoured
slice planes. (Type doc flow for more information on this data set.)
Notice that this example

• Specifies a vector of length = 9 for Sx, an empty vector for the Sy,
and a scalar value (0) for Sz. This creates nine contour plots along
the x direction in the y-z plane, and one in the x-y plane at z = 0.

• Uses linspace to define a 10-element vector of linearly spaced values
from -8 to 2. This vector specifies that 10 contour lines be drawn,
one at each element of the vector.

• Defines the view and projection type (camva, camproj, campos).

• Sets figure (gcf) and axes (gca) characteristics.

[x y z v] = flow;
h = contourslice(x,y,z,v,[1:9],[],[0],linspace(-8,2,10));
axis([0,10,-3,3,-3,3]); daspect([1,1,1])
camva(24); camproj perspective;

2-652

contourslice

campos([-3,-15,5])
set(gcf,'Color',[.5,.5,.5],'Renderer','zbuffer')
set(gca,'Color','black','XColor','white', ...
'YColor','white','ZColor','white')

box on

This example draws contour slices along a spherical surface within
the volume.

[x,y,z] = meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);
v = x.*exp(-x.^2-y.^2-z.^2); % Create volume data

2-653

contourslice

[xi,yi,zi] = sphere; % Plane to contour
contourslice(x,y,z,v,xi,yi,zi)
view(3)

See Also isosurface, slice, smooth3, subvolume, reducevolume

“Volume Visualization” on page 1-101 for related functions

2-654

contrast

Purpose Grayscale colormap for contrast enhancement

Syntax cmap = contrast(X)
cmap = contrast(X,m)

Description The contrast function enhances the contrast of an image. It creates
a new gray colormap, cmap, that has an approximately equal intensity
distribution. All three elements in each row are identical.

cmap = contrast(X) returns a gray colormap that is the same length
as the current colormap.

cmap = contrast(X,m) returns an m-by-3 gray colormap.

Examples Add contrast to the clown image defined by X.

load clown;
cmap = contrast(X);
image(X);
colormap(cmap);

See Also brighten, colormap, image

“Colormaps” on page 1-98 for related functions

2-655

conv

Purpose Convolution and polynomial multiplication

Syntax w = conv(u,v)

Description w = conv(u,v) convolves vectors u and v. Algebraically, convolution is
the same operation as multiplying the polynomials whose coefficients
are the elements of u and v.

Definition Let m = length(u) and n = length(v) . Then w is the vector of length
m+n-1 whose kth element is

The sum is over all the values of j which lead to legal subscripts for
u(j) and v(k+1-j), specifically j = max(1,k+1-n): min(k,m). When
m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)

Algorithm The convolution theorem says, roughly, that convolving two sequences
is the same as multiplying their Fourier transforms. In order to make
this precise, it is necessary to pad the two vectors with zeros and ignore
roundoff error. Thus, if

X = fft([x zeros(1,length(y)-1)])

and

Y = fft([y zeros(1,length(x)-1)])

then conv(x,y) = ifft(X.*Y)

2-656

conv

See Also conv2, convn, deconv, filter

convmtx and xcorr in the Signal Processing Toolbox

2-657

conv2

Purpose 2-D convolution

Syntax C = conv2(A,B)
C = conv2(hcol,hrow,A)
C = conv2(...,'shape')

Description C = conv2(A,B) computes the two-dimensional convolution of matrices
A and B. If one of these matrices describes a two-dimensional finite
impulse response (FIR) filter, the other matrix is filtered in two
dimensions.

The size of C in each dimension is equal to the sum of the corresponding
dimensions of the input matrices, minus one. That is, if the size
of A is [ma,na] and the size of B is [mb,nb], then the size of C is
[ma+mb-1,na+nb-1].

The value of an element of C is the sum of the element-wise product of B
and the elements in the neighborhood of the corresponding element of A.
For any A(i,j), if you overlay B on A with the center element of B over
A(i,j), the neighborhood of A(i,j) includes all the elements of A that
are under an element of B. A is padded with zeros if necessary.

The indices of the center element of B are defined as floor(([mb
nb]+1)/2).

C = conv2(hcol,hrow,A) convolves A first with the vector hcol along
the rows and then with the vector hrow along the columns. If hcol is
a column vector and hrow is a row vector, this case is the same as C
= conv2(hcol*hrow,A).

C = conv2(...,'shape') returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:

2-658

conv2

full Returns the full two-dimensional convolution
(default).

same Returns the central part of the convolution of the
same size as A.

valid Returns only those parts of the convolution that
are computed without the zero-padded edges.
Using this option, C has size [ma-mb+1,na-nb+1]
when all(size(A) >= size(B)). Otherwise conv2
returns [].

Note If any of A, B, hcol, and hrow are empty, then C is an empty
matrix [].

Algorithm conv2 uses a straightforward formal implementation of the
two-dimensional convolution equation in spatial form. If and are
functions of two discrete variables, and , then the formula for the
two-dimensional convolution of and is

In practice however, conv2 computes the convolution for finite intervals.

Note that matrix indices in MATLAB always start at 1 rather than 0.
Therefore, matrix elements A(1,1), B(1,1), and C(1,1) correspond to
mathematical quantities a (0,0), b (0,0), and c (0,0).

Examples Example 1

For the 'same' case, conv2 returns the central part of the convolution.
If there are an odd number of rows or columns, the “center” leaves one
more at the beginning than the end.

2-659

conv2

This example first computes the convolution of A using the default
('full') shape, then computes the convolution using the 'same'
shape. Note that the array returned using 'same' corresponds to the
underlined elements of the array returned using the default shape.

A = rand(3);
B = rand(4);
C = conv2(A,B) % C is 6-by-6

C =
0.1838 0.2374 0.9727 1.2644 0.7890 0.3750
0.6929 1.2019 1.5499 2.1733 1.3325 0.3096
0.5627 1.5150 2.3576 3.1553 2.5373 1.0602
0.9986 2.3811 3.4302 3.5128 2.4489 0.8462
0.3089 1.1419 1.8229 2.1561 1.6364 0.6841
0.3287 0.9347 1.6464 1.7928 1.2422 0.5423

Cs = conv2(A,B,'same') % Cs is the same size as A: 3-by-3
Cs =

2.3576 3.1553 2.5373
3.4302 3.5128 2.4489
1.8229 2.1561 1.6364

Example 2

In image processing, the Sobel edge finding operation is a
two-dimensional convolution of an input array with the special matrix

s = [1 2 1; 0 0 0; -1 -2 -1];

These commands extract the horizontal edges from a raised pedestal.

A = zeros(10);
A(3:7,3:7) = ones(5);
H = conv2(A,s);
mesh(H)

2-660

conv2

Transposing the filter s extracts the vertical edges of A.

V = conv2(A,s');
figure, mesh(V)

2-661

conv2

This figure combines both horizontal and vertical edges.

figure
mesh(sqrt(H.^2 + V.^2))

2-662

conv2

See Also conv, convn, filter2

xcorr2 in the Signal Processing Toolbox

2-663

convhull

Purpose Convex hull

Syntax K = convhull(x,y)
K = convhull(x,y,options)
[K,a] = convhull(...)

Description K = convhull(x,y) returns indices into the x and y vectors of the
points on the convex hull.

convhull uses Qhull.

K = convhull(x,y,options) specifies a cell array of strings options
to be used in Qhull via convhulln. The default option is {'Qt'}.

If options is [], the default options are used. If options is {''}, no
options will be used, not even the default. For more information on
Qhull and its options, see http://www.qhull.org.

[K,a] = convhull(...) also returns the area of the convex hull.

Visualization Use plot to plot the output of convhull.

Examples Example 1

xx = -1:.05:1; yy = abs(sqrt(xx));
[x,y] = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(k),y(k),'r-',x,y,'b+')

2-664

http://www.qhull.org

convhull

Example 2

The following example illustrates the options input for convhull. The
following commands

X = [0 0 0 1];
Y = [0 1e-10 0 1];
K = convhull(X,Y)

return a warning.

Warning: qhull precision warning:
The initial hull is narrow (cosine of min. angle is
0.9999999999999998).
A coplanar point may lead to a wide facet. Options 'QbB' (scale
to unit box)
or 'Qbb' (scale last coordinate) may remove this warning. Use 'Pp'
to skip

2-665

convhull

this warning.

To suppress this warning, use the option 'Pp'. The following command
passes the option 'Pp', along with the default 'Qt', to convhull.

K = convhull(X,Y,{'Qt','Pp'})

K =

2
1
4
2

Algorithm convhull is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhulln, delaunay, plot, polyarea, voronoi

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in
PDF format at http://www.acm.org/pubs/citations/journals
/toms/1996-22-4/p469-barber.

[2] National Science and Technology Research Center for Computation
and Visualization of Geometric Structures (The Geometry Center),
University of Minnesota, 1993.

2-666

http://www.qhull.org/
http://www.qhull.org/COPYING.txt
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/

convhulln

Purpose N-D convex hull

Syntax K = convhulln(X)
K = convulln(X, options)
[K, v] = convhulln(...)

Description K = convhulln(X) returns the indices K of the points in X that comprise
the facets of the convex hull of X. X is an m-by-n array representing m
points in N-dimensional space. If the convex hull has p facets then
K is p-by-n.

convhulln uses Qhull.

K = convulln(X, options) specifies a cell array of strings options to
be used as options in Qhull. The default options are:

• {'Qt'} for 2-, 3-. and 4-dimensional input

• {'Qt','Qx'} for 5-dimensional input and higher.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default. For more information on Qhull
and its options, see http://www.qhull.org/.

[K, v] = convhulln(...) also returns the volume v of the convex
hull.

Visualization Plotting the output of convhulln depends on the value of n:

• For n = 2, use plot as you would for convhull.

• For n = 3, you can use trisurf to plot the output. The calling
sequence is

K = convhulln(X);
trisurf(K,X(:,1),X(:,2),X(:,3))

For more control over the color of the facets, use patch to plot
the output. For an example, see “Tessellation and Interpolation

2-667

http://www.qhull.org/

convhulln

of Scattered Data in Higher Dimensions” in the MATLAB
documentation.

• You cannot plot convhulln output for n > 3.

Example The following example illustrates the options input for convhulln.
The following commands

X = [0 0; 0 1e-10; 0 0; 1 1];
K = convhulln(X)

return a warning.

Warning: qhull precision warning:
The initial hull is narrow
(cosine of min. angle is 0.9999999999999998).
A coplanar point may lead to a wide facet.
Options 'QbB' (scale to unit box) or 'Qbb'
(scale last coordinate) may remove this warning.
Use 'Pp' to skip this warning.

To suppress the warning, use the option 'Pp'. The following command
passes the option 'Pp', along with the default 'Qt', to convhulln.

K = convhulln(X,{'Qt','Pp'})

K =

1 4
1 2
4 2

Algorithm convhulln is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhull, delaunayn, dsearchn, tsearchn, voronoin

2-668

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

convhulln

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-669

convn

Purpose N-D convolution

Syntax C = convn(A,B)
C = convn(A,B,'shape')

Description C = convn(A,B) computes the N-dimensional convolution of the arrays
A and B. The size of the result is size(A)+size(B)-1.

C = convn(A,B,'shape') returns a subsection of the N-dimensional
convolution, as specified by the shape parameter:

'full' Returns the full N-dimensional convolution
(default).

'same' Returns the central part of the result that is the
same size as A.

'valid' Returns only those parts of the convolution that
can be computed without assuming that the array
A is zero-padded. The size of the result is

max(size(A)-size(B) + 1, 0)

See Also conv, conv2

2-670

copyfile

Purpose Copy file or directory

Graphical
Interface

In the Current Directory browser, select Edit > Copy, then Paste.
See details.

Syntax copyfile('source','destination')
copyfile('source','destination','f')
[status,message,messageid] = copyfile('source','destination',

'f')

Description copyfile('source','destination') copies the file or directory,
source (and all its contents) to the file or directory, destination, where
source and destination are the absolute or relative pathnames for the
directory or file. If source is a directory, destination cannot be a file.
If source is a directory, copyfile copies the contents of source, not the
directory itself. To rename a file or directory when copying it, make
destination a different name than source. If destination already
exists, copyfile replaces it without warning. Use the wildcard * at the
end of source to copy all matching files. Note that the read-only and
archive attributes of source are not preserved in destination.

copyfile('source','destination','f') copies source to
destination, regardless of the read-only attribute of destination.

[status,message,messageid] =
copyfile('source','destination','f') copies
source to destination, returning the status, a message, and the
MATLAB error message ID (see error and lasterror). Here, status is
1 for success and 0 for error. Only one output argument is required and
the f input argument is optional.

Remarks The * wildcard in a path string is supported. Current behavior of
copyfile differs between UNIX and Windows when using the wildcard
* or copying directories.

The timestamp given to the destination file is identical to that taken
from the source file.

2-671

copyfile

Examples Copy File in Current Directory, Assigning a New Name to It

To make a copy of a file myfun.m in the current directory, assigning it
the name myfun2.m, type

copyfile('myfun.m','myfun2.m')

Copy File to Another Directory

To copy myfun.m to the directory d:/work/myfiles, keeping the same
filename, type

copyfile('myfun.m','d:/work/myfiles')

Copy All Matching Files by Using a Wildcard

To copy all files in the directory myfiles whose names begin with my to
the directory newprojects, where newprojects is at the same level as
the current directory, type

copyfile('myfiles/my*','../newprojects')

Copy Directory and Return Status

In this example, all files and subdirectories in the current directory’s
myfiles directory are copied to the directory d:/work/myfiles. Note
that before running the copyfile function, d:/work does not contain
the directory myfiles. It is created because myfiles is appended to
destination in the copyfile function:

[s,mess,messid]=copyfile('myfiles','d:/work/myfiles')
s =

1

mess =
''

messid =
''

The message returned indicates that copyfile was successful.

2-672

copyfile

Copy File to Read-Only Directory

Copy myfile.m from the current directory to d:/work/restricted,
where restricted is a read-only directory:

copyfile('myfile.m','d:/work/restricted','f')

After the copy, myfile.m exists in d:/work/restricted.

See Also cd, delete, dir, fileattrib, filebrowser, fileparts, mkdir,
movefile, rmdir

2-673

copyobj

Purpose Copy graphics objects and their descendants

Syntax new_handle = copyobj(h,p)

Description copyobj creates copies of graphics objects. The copies are identical
to the original objects except the copies have different values for
their Parent property and a new handle. The new parent must be
appropriate for the copied object (e.g., you can copy a line object only to
another axes object).

new_handle = copyobj(h,p) copies one or more graphics objects
identified by h and returns the handle of the new object or a vector
of handles to new objects. The new graphics objects are children of
the graphics objects specified by p.

Remarks h and p can be scalars or vectors. When both are vectors, they must be
the same length, and the output argument, new_handle, is a vector of
the same length. In this case, new_handle(i) is a copy of h(i) with
its Parent property set to p(i).

When h is a scalar and p is a vector, h is copied once to each of the
parents in p. Each new_handle(i) is a copy of h with its Parent
property set to p(i), and length(new_handle) equals length(p).

When h is a vector and p is a scalar, each new_handle(i) is a copy of
h(i) with its Parent property set to p. The length of new_handle equals
length(h).

Graphics objects are arranged as a hierarchy. See “Handle Graphics
Objects” for more information.

Examples Copy a surface to a new axes within a different figure.

h = surf(peaks);
colormap hot
figure % Create a new figure
axes % Create an axes object in the figure
new_handle = copyobj(h,gca);

2-674

copyobj

colormap hot
view(3)
grid on

Note that while the surface is copied, the colormap (figure property),
view, and grid (axes properties) are not copies.

See Also findobj, gcf, gca, gco, get, set

Parent property for all graphics objects

“Finding and Identifying Graphics Objects” on page 1-92 for related
functions

2-675

corrcoef

Purpose Correlation coefficients

Syntax R = corrcoef(X)
R = corrcoef(x,y)
[R,P]=corrcoef(...)
[R,P,RLO,RUP]=corrcoef(...)
[...]=corrcoef(...,'param1',val1,'param2',val2,...)

Description R = corrcoef(X) returns a matrix R of correlation coefficients
calculated from an input matrix X whose rows are observations and
whose columns are variables. The matrix R = corrcoef(X) is related
to the covariance matrix C = cov(X) by

corrcoef(X) is the zeroth lag of the normalized covariance function,
that is, the zeroth lag of xcov(x,'coeff') packed into a square array.

R = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]).

[R,P]=corrcoef(...) also returns P, a matrix of p-values for testing
the hypothesis of no correlation. Each p-value is the probability of
getting a correlation as large as the observed value by random chance,
when the true correlation is zero. If P(i,j) is small, say less than 0.05,
then the correlation R(i,j) is significant.

[R,P,RLO,RUP]=corrcoef(...) also returns matrices RLO and RUP,
of the same size as R, containing lower and upper bounds for a 95%
confidence interval for each coefficient.

[...]=corrcoef(...,'param1',val1,'param2',val2,...) specifies
additional parameters and their values. Valid parameters are the
following.

2-676

corrcoef

’alpha’ A number between 0 and 1 to specify a confidence
level of 100*(1 - alpha)%. Default is 0.05 for 95%
confidence intervals.

’rows’ Either 'all' (default) to use all rows,
'complete' to use rows with no NaN values, or
'pairwise' to compute R(i,j) using rows with
no NaN values in either column i or j.

The p-value is computed by transforming the correlation to create a
t statistic having n-2 degrees of freedom, where n is the number of
rows of X. The confidence bounds are based on an asymptotic normal
distribution of 0.5*log((1+R)/(1-R)), with an approximate variance
equal to 1/(n-3). These bounds are accurate for large samples when
X has a multivariate normal distribution. The 'pairwise' option can
produce an R matrix that is not positive definite.

Examples Generate random data having correlation between column 4 and the
other columns.

x = randn(30,4); % Uncorrelated data
x(:,4) = sum(x,2); % Introduce correlation.
[r,p] = corrcoef(x) % Compute sample correlation and p-values.
[i,j] = find(p<0.05); % Find significant correlations.
[i,j] % Display their (row,col) indices.

r =
1.0000 -0.3566 0.1929 0.3457

-0.3566 1.0000 -0.1429 0.4461
0.1929 -0.1429 1.0000 0.5183
0.3457 0.4461 0.5183 1.0000

p =
1.0000 0.0531 0.3072 0.0613
0.0531 1.0000 0.4511 0.0135
0.3072 0.4511 1.0000 0.0033
0.0613 0.0135 0.0033 1.0000

2-677

corrcoef

ans =
4 2
4 3
2 4
3 4

See Also cov, mean, median, std, var

xcorr, xcov in the Signal Processing Toolbox

2-678

cos

Purpose Cosine of argument in radians

Syntax Y = cos(X)

Description The cos function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = cos(X) returns the circular cosine for each element of X.

Examples Graph the cosine function over the domain .

x = -pi:0.01:pi;
plot(x,cos(x)), grid on

The expression cos(pi/2) is not exactly zero but a value the size of
the floating-point accuracy, eps, because pi is only a floating-point
approximation to the exact value of .

2-679

cos

Definition The cosine can be defined as

Algorithm cos uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also cosd, cosh, acos, acosd, acosh

2-680

http://www.netlib.org

cosd

Purpose Cosine ofo argument in degrees

Syntax Y = cosd(X)

Description Y = cosd(X) is the cosine of the elements of X, expressed in degrees.
For odd integers n, cosd(n*90) is exactly zero, whereas cos(n*pi/2)
reflects the accuracy of the floating point value of pi.

See Also cos, cosh, acos, acosd, acosh

2-681

cosh

Purpose Hyperbolic cosine

Syntax Y = cosh(X)

Description The cosh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = cosh(X) returns the hyperbolic cosine for each element of X.

Examples Graph the hyperbolic cosine function over the domain .

x = -5:0.01:5;
plot(x,cosh(x)), grid on

Definition The hyperbolic cosine can be defined as

2-682

cosh

Algorithm cosh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acos, acosh, cos

2-683

http://www.netlib.org

cot

Purpose Cotangent of argument in radians

Syntax Y = cot(X)

Description The cot function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = cot(X) returns the cotangent for each element of X.

Examples Graph the cotangent the domains and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2)), grid on

Definition The cotangent can be defined as

2-684

cot

Algorithm cot uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also cotd, coth, acot, acotd, acoth

2-685

http://www.netlib.org

cotd

Purpose Cotangent of argument in degrees

Syntax Y = cotd(X)

Description Y = cotd(X) is the cotangent of the elements of X, expressed in degrees.
For integers n, cotd(n*180) is infinite, whereas cot(n*pi) is large but
finite, reflecting the accuracy of the floating point value of pi.

See Also cot, coth, acot, acotd, acoth

2-686

coth

Purpose Hyperbolic cotangent

Syntax Y = coth(X)

Description The coth function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = coth(X) returns the hyperbolic cotangent for each element of X.

Examples Graph the hyperbolic cotangent over the domains and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,coth(x1),x2,coth(x2)), grid on

Definition The hyperbolic cotangent can be defined as

2-687

coth

Algorithm coth uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acot, acoth, cot

2-688

http://www.netlib.org

cov

Purpose Covariance matrix

Syntax cov(x)
cov(x) or cov(x,y)
cov(x,1) or cov(x,y,1)

Description cov(x), if X is a vector, returns the variance. For matrices, where each
row is an observation, and each column is a variable, cov(X) is the
covariance matrix. diag(cov(X)) is a vector of variances for each
column, and sqrt(diag(cov(X))) is a vector of standard deviations.
cov(X,Y), where X and Y are matrices with the same number of
elements, is equivalent to cov([X(:) Y(:)]).

cov(x) or cov(x,y) normalizes by N-1, if N>1, where N is the number
of observations. This makes cov(X) the best unbiased estimate of the
covariance matrix if the observations are from a normal distribution.
For N=1, cov normalizes by N.

cov(x,1) or cov(x,y,1) normalizes by N and produces the second
moment matrix of the observations about their mean. cov(X,Y,0) is
the same as cov(X,Y) and cov(X,0) is the same as cov(X).

Remarks cov removes the mean from each column before calculating the result.

The covariance function is defined as

where is the mathematical expectation and .

Examples Consider A = [-1 1 2 ; -2 3 1 ; 4 0 3]. To obtain a vector of
variances for each column of A:

v = diag(cov(A))'
v =

10.3333 2.3333 1.0000

Compare vector v with covariance matrix C:

2-689

cov

C =
10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

The diagonal elements C(i,i) represent the variances for the columns
of A. The off-diagonal elements C(i,j) represent the covariances of
columns i and j.

See Also corrcoef, mean, median, std, var

xcorr, xcov in the Signal Processing Toolbox

2-690

cplxpair

Purpose Sort complex numbers into complex conjugate pairs

Syntax B = cplxpair(A)
B = cplxpair(A,tol)
B = cplxpair(A,[],dim)
B = cplxpair(A,tol,dim)

Description B = cplxpair(A) sorts the elements along different dimensions of a
complex array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair,
the element with negative imaginary part comes first. The purely
real values are returned following all the complex pairs. The complex
conjugate pairs are forced to be exact complex conjugates. A default
tolerance of 100*eps relative to abs(A(i)) determines which numbers
are real and which elements are paired complex conjugates.

If A is a vector, cplxpair(A) returns A with complex conjugate pairs
grouped together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and
complex conjugates paired.

If A is a multidimensional array, cplxpair(A) treats the values along
the first non-singleton dimension as vectors, returning an array of
sorted elements.

B = cplxpair(A,tol) overrides the default tolerance.

B = cplxpair(A,[],dim) sorts A along the dimension specified by
scalar dim.

B = cplxpair(A,tol,dim) sorts A along the specified dimension and
overrides the default tolerance.

Diagnostics If there are an odd number of complex numbers, or if the complex
numbers cannot be grouped into complex conjugate pairs within the
tolerance, cplxpair generates the error message

Complex numbers can't be paired.

2-691

cputime

Purpose Elapsed CPU time

Syntax cputime

Description cputime returns the total CPU time (in seconds) used by MATLAB
from the time it was started. This number can overflow the internal
representation and wrap around.

Remarks Although it is possible to measure performance using the cputime
function, it is recommended that you use the tic and toc functions
for this purpose exclusively. See Using tic and toc Versus the cputime
Function in the MATLAB Programming documentation for more
information.

Examples The following code returns the CPU time used to run surf(peaks(40)).

t = cputime; surf(peaks(40)); e = cputime-t

e =
0.4667

See Also clock, etime, tic, toc

2-692

createClassFromWsdl

Purpose Create MATLAB object based on WSDL file

Syntax createClassFromWsdl('source')

Description createClassFromWsdl('source') creates a MATLAB object based on
a Web Services Description Language (WSDL) application program
interface (API). The source argument specifies a URL or path to
a WSDL API, which defines Web service methods, arguments, and
transactions. It returns the name of the new class.

Based on the WSDL API, the createClassFromWsdl function creates
a new folder in the current directory. The folder contains an M-file
for each Web service method. In addition, two default M-files are
created: the object’s display method (display.m) and its constructor
(servicename.m).

For example, if myWebService offers two methods (method1 and
method2), the createClassFromWsdl function creates

• @myWebService folder in the current directory

• method1.m — M-file for method1

• method2.m — M-file for method2

• display.m — Default M-file for display method

• myWebService.m — Default M-file for the myWebService MATLAB
object

Remarks For more information about WSDL and Web services, see the following
resources:

• World Wide Web Consortium (W3C) WSDL specification

• W3C SOAP specification

• XMethods

2-693

createClassFromWsdl

Example The following example calls a Web service that returns the stock price
for an stock symbol.

cd(tempdir)
% Create a class for the Web service
% provided by xmethods.net
url = 'http://services.xmethods.net/soap/

urn:xmethods-delayed-quotes.wsdl';
createClassFromWsdl(url);
% Instantiate the object
service = StockQuoteService;
% getQuote returns the price of a stock
getQuote(service, 'GOOG');

See Also callSoapService, createSoapMessage, parseSoapResponse

2-694

createCopy (inputParser)

Purpose Create copy of inputParser object

Syntax p.createCopy
createCopy(p)

Description p.createCopy creates a copy of inputParser object p. Because the
inputParser class uses handle semantics, a normal assignment
statement does not create a copy.

createCopy(p) is functionally the same as the syntax above.

Note For more information on the inputParser class, see Parsing
Inputs with inputParser in the MATLAB Programming documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class.
Construct an instance of inputParser and assign it to variable p:

function publish_ip(script, varargin)
p = inputParser; % Create an instance of the inputParser class.

Add arguments to the schema. See the reference pages for the
addRequired, addOptional, and addParamValue methods for help with
this:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Make a copy of object p, assigning it to variable x. Use the Parameters
property of inputParser to list the arguments belonging to each object:

disp(' ')

2-695

createCopy (inputParser)

disp 'The input parameters for object p are'
disp(p.Parameters')

x = p.createCopy;

disp(' ')
disp 'The input parameters for the copy of object p are'
disp(x.Parameters')

Save the M-file using the Save option on the MATLAB File menu,
and then run it:

publish_ip('ipscript.m', 'ppt', 'maxWidth', 500, 'MAXHeight', 300);

The input parameters for object p are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

The input parameters for the copy of object p are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

See Also inputParser, addRequired(inputParser),
addOptional(inputParser), addParamValue(inputParser),
parse(inputParser)

2-696

createSoapMessage

Purpose Create SOAP message to send to server

Syntax createSoapMessage(namespace, method, values, names, types,
style)

Description createSoapMessage(namespace, method, values, names, types,
style) creates a SOAP message. values, names, and types are
cell arrays. names defaults to dummy names and types defaults to
unspecified. The optional style argument specifies 'document' or
'rpc' messages; rpc is the default.

Example message = createSoapMessage(...
'urn:xmethods-delay-quotes',...
'getQuote', ...
{'GOOG'}, ...
{'symbol'}, ...
{'http://www.w3.org/2001/XMLSchema}string'}, ...
'rpc');

response = callSoapService(...
'http://64.124.140.30:9090/soap', ...
'urn:xmethods-delayed-quotes#getQuote' ...
message);

price = parseSoapResponse(response)

See Also callSoapService, createClassFromWsdl, parseSoapResponse

2-697

cross

Purpose Vector cross product

Syntax C = cross(A,B)
C = cross(A,B,dim)

Description C = cross(A,B) returns the cross product of the vectors A and B.
That is, C = A x B. A and B must be 3-element vectors. If A and B are
multidimensional arrays, cross returns the cross product of A and B
along the first dimension of length 3.

C = cross(A,B,dim) where A and B are multidimensional arrays,
returns the cross product of A and B in dimension dim. A and B must
have the same size, and both size(A,dim) and size(B,dim) must be 3.

Remarks To perform a dot (scalar) product of two vectors of the same size, use
c = dot(a,b).

Examples The cross and dot products of two vectors are calculated as shown:

a = [1 2 3];
b = [4 5 6];
c = cross(a,b)

c =
-3 6 -3

d = dot(a,b)

d =
32

See Also dot

2-698

csc

Purpose Cosecant of argument in radians

Syntax Y = csc(x)

Description The csc function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = csc(x) returns the cosecant for each element of x.

Examples Graph the cosecant over the domains and .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csc(x1),x2,csc(x2)), grid on

2-699

csc

Definition The cosecant can be defined as

Algorithm csc uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also cscd, csch, acsc, acscd, acsch

2-700

http://www.netlib.org

cscd

Purpose Cosecant of argument in degrees

Syntax Y = cscd(X)

Description Y = cscd(X) is the cosecant of the elements of X, expressed in degrees.
For integers n, cscd(n*180) is infinite, whereas csc(n*pi) is large but
finite, reflecting the accuracy of the floating point value of pi.

See Also csc, csch, acsc, acscd, acsch

2-701

csch

Purpose Hyperbolic cosecant

Syntax Y = csch(x)

Description The csch function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = csch(x) returns the hyperbolic cosecant for each element of x.

Examples Graph the hyperbolic cosecant over the domains and
.

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csch(x1),x2,csch(x2)), grid on

Definition The hyperbolic cosecant can be defined as

2-702

csch

Algorithm csch uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acsc, acsch, csc

2-703

http://www.netlib.org

csvread

Purpose Read comma-separated value file

Syntax M = csvread(filename)
M = csvread(filename, row, col)
M = csvread(filename, row, col, range)

Description M = csvread(filename) reads a comma-separated value formatted
file, filename. The filename input is a string enclosed in single quotes.
The result is returned in M. The file can only contain numeric values.

M = csvread(filename, row, col) reads data from the
comma-separated value formatted file starting at the specified row and
column. The row and column arguments are zero based, so that row=0
and col=0 specify the first value in the file.

M = csvread(filename, row, col, range) reads only the range
specified. Specify range using the notation [R1 C1 R2 C2] where
(R1,C1) is the upper left corner of the data to be read and (R2,C2) is the
lower right corner. You can also specify the range using spreadsheet
notation, as in range = 'A1..B7'.

Remarks csvread fills empty delimited fields with zero. Data files having lines
that end with a nonspace delimiter, such as a semicolon, produce a
result that has an additional last column of zeros.

csvread imports any complex number as a whole into a complex
numeric field, converting the real and imaginary parts to the specified
numeric type. Valid forms for a complex number are

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j

Embedded white-space in a complex number is invalid and is regarded
as a field delimiter.

2-704

csvread

Examples Given the file csvlist.dat that contains the comma-separated values

02, 04, 06, 08, 10, 12
03, 06, 09, 12, 15, 18
05, 10, 15, 20, 25, 30
07, 14, 21, 28, 35, 42
11, 22, 33, 44, 55, 66

To read the entire file, use

csvread('csvlist.dat')

ans =

2 4 6 8 10 12
3 6 9 12 15 18
5 10 15 20 25 30
7 14 21 28 35 42

11 22 33 44 55 66

To read the matrix starting with zero-based row 2, column 0, and assign
it to the variable m,

m = csvread('csvlist.dat', 2, 0)

m =

5 10 15 20 25 30
7 14 21 28 35 42

11 22 33 44 55 66

To read the matrix bounded by zero-based (2,0) and (3,3) and assign
it to m,

m = csvread('csvlist.dat', 2, 0, [2,0,3,3])

m =

2-705

csvread

5 10 15 20
7 14 21 28

See Also csvwrite, dlmread, textscan, wk1read, file formats, importdata,
uiimport

2-706

csvwrite

Purpose Write comma-separated value file

Syntax csvwrite(filename,M)
csvwrite(filename,M,row,col)

Description csvwrite(filename,M) writes matrix M into filename as
comma-separated values. The filename input is a string enclosed in
single quotes.

csvwrite(filename,M,row,col) writes matrix M into filename
starting at the specified row and column offset. The row and column
arguments are zero based, so that row=0 and C=0 specify the first value
in the file.

Remarks csvwrite terminates each line with a line feed character and no
carriage return.

Examples The following example creates a comma-separated value file from the
matrix m.

m = [3 6 9 12 15; 5 10 15 20 25; ...
7 14 21 28 35; 11 22 33 44 55];

csvwrite('csvlist.dat',m)
type csvlist.dat

3,6,9,12,15
5,10,15,20,25
7,14,21,28,35
11,22,33,44,55

The next example writes the matrix to the file, starting at a column
offset of 2.

csvwrite('csvlist.dat',m,0,2)
type csvlist.dat

2-707

csvwrite

,,3,6,9,12,15
,,5,10,15,20,25
,,7,14,21,28,35
,,11,22,33,44,55

See Also csvread, dlmwrite, wk1write,file formats, importdata, uiimport

2-708

ctranspose (timeseries)

Purpose Transpose timeseries object

Syntax ts1 = ctranspose(ts)

Description ts1 = ctranspose(ts) returns a new timeseries object ts1 with
IsTimeFirst value set to the opposite of what it is for ts. For example,
if ts has the first data dimension aligned with the time vector, ts1
has the last data dimension aligned with the time vector as a result of
this operation.

Remarks The ctranspose function that is overloaded for timeseries objects does
not transpose the data. Instead, this function changes whether the first
or the last dimension of the data is aligned with the time vector.

Note To transpose the data, you must transpose the Data property
of the timeseries object. For example, you can use the syntax
ctranspose(ts.Data) or (ts.Data)'. Data must be a 2-D array.

Consider a timeseries object with 10 samples with the property
IsTimeFirst = True. When you transpose this object, the data size is
changed from 10-by-1 to 1-by-1-by-10. Note that the first dimension of
the Data property is shown explicitly.

The following table summarizes how MATLAB displays the size for
Data property of the timeseries object (up to three dimensions) before
and after transposing.

Data Size Before and After Transposing

Size of Original Data Size of Transposed Data

N-by-1 1-by-1-by-N

N-by-M M-by-1-by-N

N-by-M-by-L M-by-L-by-N

2-709

ctranspose (timeseries)

Examples Suppose that a timeseries object ts has ts.data size 10-by-3-by-2
and its time vector has a length of 10. The IsTimeFirst property of
ts is set to true, which means that the first dimension of the data is
aligned with the time vector. ctranspose(ts) modifies ts such that
the last dimension of the data is now aligned with the time vector. This
permutes the data such that the size of ts.Data becomes 3-by-2-by-10.

See Also transpose (timeseries), tsprops

2-710

cumprod

Purpose Cumulative product

Syntax B = cumprod(A)
B = cumprod(A,dim)

Description B = cumprod(A) returns the cumulative product along different
dimensions of an array.

If A is a vector, cumprod(A) returns a vector containing the cumulative
product of the elements of A.

If A is a matrix, cumprod(A) returns a matrix the same size as A
containing the cumulative products for each column of A.

If A is a multidimensional array, cumprod(A) works on the first
nonsingleton dimension.

B = cumprod(A,dim) returns the cumulative product of the elements
along the dimension of A specified by scalar dim. For example,
cumprod(A,1) increments the first (row) index, thus working along
the rows of A.

Examples cumprod(1:5)
ans =

1 2 6 24 120

A = [1 2 3; 4 5 6];

cumprod(A)
ans =

1 2 3
4 10 18

cumprod(A,2)
ans =

1 2 6
4 20 120

2-711

cumprod

See Also cumsum, prod, sum

2-712

cumsum

Purpose Cumulative sum

Syntax B = cumsum(A)
B = cumsum(A,dim)

Description B = cumsum(A) returns the cumulative sum along different dimensions
of an array.

If A is a vector, cumsum(A) returns a vector containing the cumulative
sum of the elements of A.

If A is a matrix, cumsum(A) returns a matrix the same size as A
containing the cumulative sums for each column of A.

If A is a multidimensional array, cumsum(A) works on the first
nonsingleton dimension.

B = cumsum(A,dim) returns the cumulative sum of the elements along
the dimension of A specified by scalar dim. For example, cumsum(A,1)
works across the first dimension (the rows).

Examples cumsum(1:5)
ans =

[1 3 6 10 15]

A = [1 2 3; 4 5 6];

cumsum(A)
ans =

1 2 3
5 7 9

cumsum(A,2)
ans =

1 3 6
4 9 15

See Also cumprod, prod, sum

2-713

cumtrapz

Purpose Cumulative trapezoidal numerical integration

Syntax Z = cumtrapz(Y)
Z = cumtrapz(X,Y)
Z = cumtrapz(X,Y,dim) or cumtrapz(Y,dim)

Description Z = cumtrapz(Y) computes an approximation of the cumulative
integral of Y via the trapezoidal method with unit spacing. To compute
the integral with other than unit spacing, multiply Z by the spacing
increment. Input Y can be complex.

For vectors, cumtrapz(Y) is a vector containing the cumulative integral
of Y.

For matrices, cumtrapz(Y) is a matrix the same size as Y with the
cumulative integral over each column.

For multidimensional arrays, cumtrapz(Y) works across the first
nonsingleton dimension.

Z = cumtrapz(X,Y) computes the cumulative integral of Y with respect
to X using trapezoidal integration. X and Y must be vectors of the
same length, or X must be a column vector and Y an array whose first
nonsingleton dimension is length(X). cumtrapz operates across this
dimension. Inputs X and Y can be complex.

If X is a column vector and Y an array whose first nonsingleton dimension
is length(X), cumtrapz(X,Y) operates across this dimension.

Z = cumtrapz(X,Y,dim) or cumtrapz(Y,dim) integrates across the
dimension of Y specified by scalar dim. The length of X must be the
same as size(Y,dim).

Example Example 1

Y = [0 1 2; 3 4 5];

cumtrapz(Y,1)
ans =
0 0 0

2-714

cumtrapz

1.5000 2.5000 3.5000

cumtrapz(Y,2)
ans =
0 0.5000 2.0000

0 3.5000 8.0000

Example 2

This example uses two complex inputs:

z = exp(1i*pi*(0:100)/100);

ct = cumtrapz(z,1./z);
ct(end)
ans =

0.0000 + 3.1411i

See Also cumsum, trapz

2-715

curl

Purpose Compute curl and angular velocity of vector field

Syntax [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W)
[curlx,curly,curlz,cav] = curl(U,V,W)
[curlz,cav]= curl(X,Y,U,V)
[curlz,cav]= curl(U,V)
[curlx,curly,curlz] = curl(...), curlx,curly] = curl(...)
cav = curl(...)

Description [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W) computes the curl
and angular velocity perpendicular to the flow (in radians per time unit)
of a 3-D vector field U, V, W. The arrays X, Y, Z define the coordinates for U,
V, W and must be monotonic and 3-D plaid (as if produced by meshgrid).

[curlx,curly,curlz,cav] = curl(U,V,W) assumes X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

[curlz,cav]= curl(X,Y,U,V) computes the curl z-component and the
angular velocity perpendicular to z (in radians per time unit) of a 2-D
vector field U, V. The arrays X, Y define the coordinates for U, V and must
be monotonic and 2-D plaid (as if produced by meshgrid).

[curlz,cav]= curl(U,V) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

[curlx,curly,curlz] = curl(...), curlx,curly] = curl(...)
returns only the curl.

cav = curl(...) returns only the curl angular velocity.

Examples This example uses colored slice planes to display the curl angular
velocity at specified locations in the vector field.

2-716

curl

load wind
cav = curl(x,y,z,u,v,w);
slice(x,y,z,cav,[90 134],[59],[0]);
shading interp
daspect([1 1 1]); axis tight
colormap hot(16)
camlight

This example views the curl angular velocity in one plane of the volume
and plots the velocity vectors (quiver) in the same plane.

load wind
k = 4;
x = x(:,:,k); y = y(:,:,k); u = u(:,:,k); v = v(:,:,k);
cav = curl(x,y,u,v);
pcolor(x,y,cav); shading interp
hold on;
quiver(x,y,u,v,'y')

2-717

curl

hold off
colormap copper

See Also streamribbon, divergence

“Volume Visualization” on page 1-101 for related functions

“Displaying Curl with Stream Ribbons” for another example

2-718

customverctrl

Purpose Allow custom source control system (UNIX)

Syntax customerverctrl

Description customerverctrl function is for customers who want to integrate
a source control system that is not supported with MATLAB.
When using this function, conform to the structure of one of
the supported version control systems, for example, RCS. For
examples, see the files clearcase.m, cvs.m, pvcs.m, and rcs.m in
matlabroot\toolbox\matlab\verctrl.

See Also checkin, checkout, cmopts, undocheckout

For Windows platforms, use verctrl.

2-719

cylinder

Purpose Generate cylinder

Syntax [X,Y,Z] = cylinder
[X,Y,Z] = cylinder(r)
[X,Y,Z] = cylinder(r,n)
cylinder(axes_handle,...)
cylinder(...)

Description cylinder generates x-, y-, and z-coordinates of a unit cylinder. You can
draw the cylindrical object using surf or mesh, or draw it immediately
by not providing output arguments.

[X,Y,Z] = cylinder returns the x-, y-, and z-coordinates of a cylinder
with a radius equal to 1. The cylinder has 20 equally spaced points
around its circumference.

[X,Y,Z] = cylinder(r) returns the x-, y-, and z-coordinates of a
cylinder using r to define a profile curve. cylinder treats each element
in r as a radius at equally spaced heights along the unit height of
the cylinder. The cylinder has 20 equally spaced points around its
circumference.

[X,Y,Z] = cylinder(r,n) returns the x-, y-, and z-coordinates of a
cylinder based on the profile curve defined by vector r. The cylinder has
n equally spaced points around its circumference.

cylinder(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

cylinder(...), with no output arguments, plots the cylinder using
surf.

2-720

cylinder

Remarks cylinder treats its first argument as a profile curve. The resulting
surface graphics object is generated by rotating the curve about the
x-axis, and then aligning it with the z-axis.

Examples Create a cylinder with randomly colored faces.

cylinder
axis square
h = findobj('Type','surface');
set(h,'CData',rand(size(get(h,'CData'))))

Generate a cylinder defined by the profile function 2+sin(t).

t = 0:pi/10:2*pi;

2-721

cylinder

[X,Y,Z] = cylinder(2+cos(t));
surf(X,Y,Z)
axis square

See Also sphere, surf

“Polygons and Surfaces” on page 1-89 for related functions

2-722

daqread

Purpose Read Data Acquisition Toolbox (.daq) file

Syntax data = daqread('filename')
[data, time] = daqread(...)
[data, time, abstime] = daqread(...)
[data, time, abstime, events] = daqread(...)
[data, time, abstime, events, daqinfo] = daqread(...)
data = daqread(...,'Param1', Val1,...)
daqinfo = daqread('filename','info')

Description data = daqread('filename') reads all the data from the Data
Acquisition Toolbox (.daq) file specified by filename. daqread returns
data, an m-by-n data matrix, where m is the number of samples and
n is the number of channels. If data includes data from multiple
triggers, the data from each trigger is separated by a NaN. If you set the
OutputFormat property to tscollection, daqread returns a time series
collection object. See below for more information.

[data, time] = daqread(...) returns time/value pairs. time is an
m-by-1 vector, the same length as data, that contains the relative time
for each sample. Relative time is measured with respect to the first
trigger that occurs.

[data, time, abstime] = daqread(...) returns the absolute time of
the first trigger. abstime is returned as a clock vector.

[data, time, abstime, events] = daqread(...) returns a log of events.
events is a structure containing event information. If you specify either
theSamples, Time, or Triggers parameters (see below), the events
structure contains only the specified events.

[data, time, abstime, events, daqinfo] = daqread(...) returns a
structure, daqinfo, that contains two fields: ObjInfo and HwInfo.
ObjInfo is a structure containing property name/property value pairs
and HwInfo is a structure containing hardware information. The entire
event log is returned to daqinfo.ObjInfo.EventLog.

2-723

daqread

data = daqread(...,'Param1', Val1,...) specifies the amount
of data returned and the format of the data, using the following
parameters.

Parameter Description

Samples Specify the sample range.

Time Specify the relative time range.

Triggers Specify the trigger range.

Channels Specify the channel range. Channel names can be
specified as a cell array.

DataFormat Specify the data format as doubles (default) or
native.

TimeFormat Specify the time format as vector (default) or
matrix.

OutputFormat Specify the output format as matrix (the default)
or tscollection. When you specify tscollection,
daqread only returns data.

The Samples, Time, and Triggers properties are mutually exclusive;
that is, either Samples, Triggers or Time can be defined at once.

daqinfo = daqread('filename','info') returns metadata from the file
in the daqinfo structure, without incurring the overhead of reading the
data from the file as well. The daqinfo structure contains two fields:

daqinfo.ObjInfo
a structure containing parameter/value pairs for the data
acquisition object used to create the file, filename. Note: The
UserData property value is not restored.

daqinfo.HwInfo
a structure containing hardware information. The entire event
log is returned to daqinfo.ObjInfo.EventLog.

2-724

daqread

Remarks More About .daq Files

• The format used by daqread to return data, relative time, absolute
time, and event information is identical to the format used by the
getdata function that is part of Data Acquisition Toolbox. For more
information, see the Data Acquisition Toolbox documentation.

• If data from multiple triggers is read, then the size of the resulting
data array is increased by the number of triggers issued because
each trigger is separated by a NaN.

• ObjInfo.EventLog always contains the entire event log regardless of
the value specified by Samples, Time, or Triggers.

• The UserData property value is not restored when you return device
object (ObjInfo) information.

• When reading a .daq file, the daqread function does not return
property values that were specified as a cell array.

• Data Acquisition Toolbox (.daq) files are created by specifying a value
for the LogFileName property (or accepting the default value), and
configuring the LoggingMode property to Disk or Disk&Memory.

More About Time Series Collection Object Returned

When OutputFormat is set to tscollection, daqread returns a time
series collection object. This times series collection object contains an
absolute time series object for each channel in the file. The following
describes how daqread sets some of the properties of the times series
collection object and the time series objects.

• The time property of the time series collection object is set to the
value of the InitialTriggerTime property specified in the file.

• The name property of each time series object is set to the value of the
Name property of a channel in the file. If this name cannot be used as
a time series object name, daqread sets the name to 'Channel' with
the HwChannel property of the channel appended.

2-725

daqread

• The value of the Units property of the time series object depends on
the value of the DataFormat parameter. If the DataFormat parameter
is set to 'double', daqread sets the DataInfo property of each time
series object in the collection to the value of the Units property of the
corresponding channel in the file. If the DataFormat parameter is
set to 'native', daqread sets the Units property to 'native’. See
the Data Acquisition Toolbox documentation for more information
on these properties.

• Each time series object will have tsdata.event objects attached
corresponding to the log of events associated with the channel.

If daqread returns data from multiple triggers, the data from each
trigger is separated by a NaN in the time series data. This increases the
length of data and time vectors in the time series object by the number
of triggers.

Examples Use Data Acquisition Toolbox to acquire data. The analog input object,
ai, acquires one second of data for four channels, and saves the data to
the output file data.daq.

ai = analoginput('nidaq','Dev1');
chans = addchannel(ai,0:3);
set(ai,'SampleRate',1000)
ActualRate = get(ai,'SampleRate');
set(ai,'SamplesPerTrigger, ActualRate)
set(ai,'LoggingMode','Disk&Memory')
set(ai,'LogFileName','data.daq')
start(ai)

After the data has been collected and saved to a disk file, you can
retrieve the data and other acquisition-related information using
daqread. To read all the sample-time pairs from data.daq:

[data,time] = daqread('data.daq');

To read samples 500 to 1000 for all channels from data.daq:

2-726

daqread

data = daqread('data.daq','Samples',[500 1000]);

To read only samples 1000 to 2000 of channel indices 2, 4 and 7 in
native format from the file, data.daq:

data = daqread('data.daq', 'Samples', [1000 2000],...
'Channels', [2 4 7], 'DataFormat', 'native');

To read only the data which represents the first and second triggers on
all channels from the file, data.daq:

[data, time] = daqread('data.daq', 'Triggers', [1 2]);

To obtain the channel property information from data.daq:

daqinfo = daqread('data.daq','info');
chaninfo = daqinfo.ObjInfo.Channel;

To obtain a list of event types and event data contained by data.daq:

daqinfo = daqread('data.daq','info');
events = daqinfo.ObjInfo.EventLog;
event_type = {events.Type};
event_data = {events.Data};

To read all the data from the file data.daq and return it as a time
series collection object:

data = daqread('data.daq','OutputFormat','tscollection');

See Also Functions

timeseries, tscollection

For more information about using this function, see the Data Acquisition
Toolbox documentation.

2-727

daspect

Purpose Set or query axes data aspect ratio

Syntax daspect
daspect([aspect_ratio])
daspect('mode')
daspect('auto')
daspect('manual')
daspect(axes_handle,...)

Description The data aspect ratio determines the relative scaling of the data units
along the x-, y-, and z-axes.

daspect with no arguments returns the data aspect ratio of the current
axes.

daspect([aspect_ratio]) sets the data aspect ratio in the current
axes to the specified value. Specify the aspect ratio as three relative
values representing the ratio of the x-, y-, and z-axis scaling (e.g., [1 1
3] means one unit in x is equal in length to one unit in y and three
units in z).

daspect('mode') returns the current value of the data aspect ratio
mode, which can be either auto (the default) or manual. See Remarks.

daspect('auto') sets the data aspect ratio mode to auto.

daspect('manual') sets the data aspect ratio mode to manual.

daspect(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, daspect operates on the current axes.

Remarks daspect sets or queries values of the axes object DataAspectRatio and
DataAspectRatioMode properties.

When the data aspect ratio mode is auto, MATLAB adjusts the data
aspect ratio so that each axis spans the space available in the figure
window. If you are displaying a representation of a real-life object,
you should set the data aspect ratio to [1 1 1] to produce the correct
proportions.

2-728

daspect

Setting a value for data aspect ratio or setting the data aspect ratio
mode to manual disables the MATLAB stretch-to-fill feature (stretching
of the axes to fit the window). This means setting the data aspect ratio
to a value, including its current value,

daspect(daspect)

can cause a change in the way the graphs look. See the Remarks section
of the axes description for more information.

Examples The following surface plot of the function is useful to
illustrate the data aspect ratio. First plot the function over the range –2
≤ x ≤ 2, –2 ≤ y ≤ 2,

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

2-729

daspect

Querying the data aspect ratio shows how MATLAB has drawn the
surface.

daspect
ans =

4 4 1

Setting the data aspect ratio to [1 1 1] produces a surface plot with
equal scaling along each axis.

daspect([1 1 1])

See Also axis, pbaspect, xlim, ylim, zlim

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim,
YLim, ZLim

“Setting the Aspect Ratio and Axis Limits” on page 1-99 for related
functions

“Understanding Axes Aspect Ratio” for more information

2-730

datacursormode

Purpose Enable or disable interactive data cursor mode

GUI
Alternatives

Use the Data Cursor tool to label x, y, and z values on graphs and
surfaces. For details, see Data Cursor — Displaying Data Values
Interactively in the MATLAB Graphics documentation.

Syntax datacursormode on
datacursormode off
datacursormode
datacursormode(figure_handle,...)
dcm_obj = datacursormode(figure_handle)

Description datacursormode on enables data cursor mode on the current figure.

datacursormode off disables data cursor mode on the current figure.

datacursormode toggles data cursor mode on the current figure.

datacursormode(figure_handle,...) enables or disables data cursor
mode on the specified figure.

dcm_obj = datacursormode(figure_handle) returns the figure’s data
cursor mode object, which enables you to customize the data cursor. See
“Data Cursor Mode Object” on page 2-731.

Data
Cursor
Mode
Object

The data cursor mode object has properties that enable you to controls
certain aspects of the data cursor. You can use the set and get
commands and the returned object (dcm_obj in the above syntax) to set
and query property values.

Data Cursor Mode Properties

Enable
on | off

Specifies whether this mode is currently enabled on the figure.

SnapToDataVertex
on | off

2-731

datacursormode

Specifies whether the data cursor snaps to the nearest data value
or is located at the actual pointer position.

DisplayStyle
datatip | window

Determines how the data is displayed.

• datatip displays cursor information in a yellow text box next
to a marker indicating the actual data point being displayed.

• window displays cursor information in a floating window within
the figure.

Updatefcn
function handle

This property references a function that customizes the text
appearing in the data cursor. The function handle must reference
a function that has two implicit arguments (these arguments
are automatically passed to the function by MATLAB when the
function executes). For example, the following function definition
line uses the required arguments:

function output_txt = myfunction(obj,event_obj)
% obj Currently not used (empty)
% event_obj Handle to event object
% output_txt Data cursor text string (string or cell array of
% strings).

event_obj is an object having the following read-only properties.

• Target — Handle of the object the data cursor is referencing
(the object on which the user clicked).

• Position — An array specifying the x, y, (and z for 3-D graphs)
coordinates of the cursor.

You can query these properties within your function. For example,

pos = get(event_obj,'Position');

2-732

datacursormode

returns the coordinates of the cursor.

See Function Handles for more information on creating a function
handle.

See “Change Data Cursor Text” on page 2-735 for an example.

Data Cursor Method

You can use the getCursorInfo function with the data cursor mode
object (dcm_obj in the above syntax) to obtain information about the
data cursor. For example,

info_struct = getCursorInfo(dcm_obj);

returns a vector of structures, one for each data cursor on the graph.
Each structure has the following fields:

• Target — The handle of the graphics object containing the data point.

• Position — An array specifying the x, y, (and z) coordinates of the
cursor.

Line and lineseries objects have an additional field:

• DataIndex — A scalar index into the data arrays that correspond to
the nearest data point. The value is the same for each array.

Examples This example creates a plot and enables data cursor mode from the
command line.

surf(peaks)
datacursormode on
% Click mouse on surface to display data cursor

Setting Data Cursor Mode Options

This example enables data cursor mode on the current figure and sets
data cursor mode options. The following statements

• Create a graph

2-733

datacursormode

• Toggle data cursor mode to on

• Save the data cursor mode object to specify options and get the
handle of the line to which the datatip is attached

fig = figure;
z = peaks;
plot(z(:,30:35))
dcm_obj = datacursormode(fig);
set(dcm_obj,'DisplayStyle','datatip',...
'SnapToDataVertex','off','Enable','on')

% Click on line to place datatip

c_info = getCursorInfo(dcm_obj);
set(c_info.Target,'LineWidth',2) % Make
selected line wider

2-734

datacursormode

Change Data Cursor Text

This example shows you how to customize the text that is displayed by
the data cursor. Suppose you want to replace the text displayed in the
datatip and data window with “Time:” and “Amplitude:”

function doc_datacursormode
fig = figure;
a = -16; t = 0:60;
plot(t,sin(a*t))
dcm_obj = datacursormode(fig);
set(dcm_obj,'UpdateFcn',@myupdatefcn)

% Click on line to select data point

function txt = myupdatefcn(empt,event_obj)
pos = get(event_obj,'Position');
txt = {['Time: ',num2str(pos(1))],...
['Amplitude: ',num2str(pos(2))]};

2-735

datatipinfo

Purpose Produce short description of input variable

Syntax datatipinfo(var)

Description datatipinfo(var) displays a short description of a variable, similar to
what is displayed in a datatip in the MATLAB debugger.

Examples Get datatip information for a 5-by-5 matrix:

A = rand(5);

datatipinfo(A)
A: 5x5 double =

0.4445 0.3567 0.7458 0.0767 0.4400
0.7962 0.6575 0.3918 0.8289 0.9746
0.5641 0.9808 0.0265 0.4838 0.6722
0.9099 0.9653 0.2508 0.4859 0.4054
0.2857 0.5198 0.7383 0.9301 0.9604

Get datatip information for a 50-by-50 matrix. For this larger matrix,
datatipinfo displays just the size and data type:

A = rand(50);

datatipinfo(A)
A: 50x50 double

Also for multidimensional matrices, datatipinfo displays just the size
and data type:

A = rand(5);
A(:,:,2) = A(:,:,1);

datatipinfo(A)
A: 5x5x2 double

See Also debug

2-736

date

Purpose Current date string

Syntax str = date

Description str = date returns a string containing the date in dd-mmm-yyyy format.

See Also clock, datenum, now

2-737

datenum

Purpose Convert date and time to serial date number

Syntax N = datenum(V)
N = datenum(S, F)
N = datenum(S, F, P)
N = datenum([S, P, F])
N = datenum(Y, M, D)
N = datenum(Y, M, D, H, MN, S)
N = datenum(S)
N = datenum(S, P)

Description datenum is one of three conversion functions that enable you to express
dates and times in any of three formats in MATLAB: a string (or date
string), a vector of date and time components (or date vector), or as
a numeric offset from a known date in time (or serial date number).
Here is an example of a date and time expressed in the three MATLAB
formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from a specific date and time, where datenum('Jan-1-0000
00:00:00') returns the number 1. (The year 0000 is merely a reference
point and is not intended to be interpreted as a real year in time.)

N = datenum(V) converts one or more date vectors V to serial date
numbers N. Input V can be an m-by-6 or m-by-3 matrix containing m full
or partial date vectors respectively. A full date vector has six elements,
specifying year, month, day, hour, minute, and second, in that order. A
partial date vector has three elements, specifying year, month, and day,
in that order. Each element of V must be a positive double-precision
number. datenum returns a column vector of m date numbers, where m is
the total number of date vectors in V.

N = datenum(S, F) converts one or more date strings S to serial date
numbers N using format string F to interpret each date string. Input S

2-738

datenum

can be a one-dimensional character array or cell array of date strings.
All date strings in S must have the same format, and that format must
match one of the date string formats shown in the help for the datestr
function. datenum returns a column vector of m date numbers, where m
is the total number of date strings in S. MATLAB considers date string
years that are specified with only two characters (e.g., '79') to fall
within 100 years of the current year.

See the datestr reference page to find valid string values for F. These
values are listed in Table 1 in the column labeled “Dateform String.”
You can use any string from that column except for those that include
the letter Q in the string (for example, ’QQ-YYYY’). Certain formats may
not contain enough information to compute a date number. In these
cases, hours, minutes, seconds, and milliseconds default to 0, the month
defaults to January, the day to 1, and the year to the current year.

N = datenum(S, F, P) converts one or more date strings S to date
numbers N using format F and pivot year P. The pivot year is used in
interpreting date strings that have the year specified as two characters.
It is the starting year of the 100-year range in which a two-character
date string year resides. The default pivot year is the current year
minus 50 years.

N = datenum([S, P, F]) is the same as the syntax shown above, except
the order of the last two arguments are switched.

N = datenum(Y, M, D) returns the serial date numbers for
corresponding elements of the Y, M, and D (year, month, day) arrays.
Y, M, and D must be arrays of the same size (or any can be a scalar)
of type double. You can also specify the input arguments as a date
vector, [Y M D].

For this and the following syntax, values outside the normal range of
each array are automatically carried to the next unit. Values outside
the normal range of each array are automatically carried to the next
unit. For example, month values greater than 12 are carried to years.
Month values less than 1 are set to be 1. All other units can wrap and
have valid negative values.

2-739

datenum

N = datenum(Y, M, D, H, MN, S) returns the serial date numbers
for corresponding elements of the Y, M, D, H, MN, and S (year, month,
day, hour, minute, and second) array values. datenum does not accept
milliseconds in a separate input, but as a fractional part of the seconds
(S) input. Inputs Y, M, D, H, MN, and S must be arrays of the same size
(or any can be a scalar) of type double. You can also specify the input
arguments as a date vector, [Y M D H MN S].

N = datenum(S) converts date string S into a serial date number.
String S must be in one of the date formats 0, 1, 2, 6, 13, 14, 15, 16, or
23, as defined in the reference page for the datestr function. MATLAB
considers date string years that are specified with only two characters
(e.g., '79') to fall within 100 years of the current year. If the format of
date string S is known, use the syntax N = datenum(S, F).

N = datenum(S, P) converts date string S, using pivot year P. If the
format of date string S is known, use the syntax N = datenum(S, F,
P).

Note The last two calling syntaxes are provided for backward
compatibility and are significantly slower than the syntaxes that
include a format argument F.

Examples Convert a date string to a serial date number:

n = datenum('19-May-2001', 'dd-mmm-yyyy')

n =
730990

Specifying year, month, and day, convert a date to a serial date number:

n = datenum(2001, 12, 19)

n =
731204

2-740

datenum

Convert a date vector to a serial date number:

format bank
datenum('March 28, 2005 3:37:07.033 PM')
ans =

732399.65

Convert a date string to a serial date number using the default pivot
year:

n = datenum('12-jun-17', 'dd-mmm-yy')

n =
736858

Convert the same date string to a serial date number using 1400 as
the pivot year:

n = datenum('12-jun-17', 'dd-mmm-yy', 1400)

n =
517712

Specify format 'dd.mm.yyyy' to be used in interpreting a nonstandard
date string:

n = datenum('19.05.2000', 'dd.mm.yyyy')

n =
730625

See Also datestr, datevec, date, clock, now, datetick

2-741

datestr

Purpose Convert date and time to string format

Syntax S = datestr(V)
S = datestr(N)
S = datestr(D, F)
S = datestr(S1, F, P)
S = datestr(..., 'local')

Description datestr is one of three conversion functions that enable you to express
dates and times in any of three formats in MATLAB: a string (or date
string), a vector of date and time components (or date vector), or as
a numeric offset from a known date in time (or serial date number).
Here is an example of a date and time expressed in the three MATLAB
formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from 1-Jan-0000 to a specific date. The year 0000 is merely
a reference point and is not intended to be interpreted as a real year
in time.

S = datestr(V) converts one or more date vectors V to date strings S.
Input V must be an m-by-6 matrix containing m full (six-element) date
vectors. Each element of V must be a positive double-precision number.
datestr returns a column vector of m date strings, where m is the total
number of date vectors in V.

S = datestr(N) converts one or more serial date numbers N to date
strings S. Input argument N can be a scalar, vector, or multidimensional
array of positive double-precision numbers. datestr returns a column
vector of m date strings, where m is the total number of date numbers
in N.

S = datestr(D, F) converts one or more date vectors, serial date
numbers, or date strings D into the same number of date strings S.

2-742

datestr

Input argument F is a format number or string that determines the
format of the date string output. Valid values for F are given in the
table Standard MATLAB Date Format Definitions on page 2-743, below.
Input F may also contain a free-form date format string consisting of
format tokens shown in the table Free-Form Date Format Specifiers
on page 2-746, below.

Date strings with 2-character years are interpreted to be within the 100
years centered around the current year.

S = datestr(S1, F, P) converts date string S1 to date string S,
applying format F to the output string, and using pivot year P as the
starting year of the 100-year range in which a two-character year
resides. The default pivot year is the current year minus 50 years.

S = datestr(..., 'local') returns the string in a localized format.
The default is US English (’en_US’). This argument must come last
in the argument sequence.

Note The vectorized calling syntax can offer significant performance
improvement for large arrays.

Standard MATLAB Date Format Definitions

dateform
(number) dateform (string) Example

0 'dd-mmm-yyyy
HH:MM:SS'

01-Mar-2000 15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

2-743

datestr

dateform
(number) dateform (string) Example

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1-01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd,yyyy
HH:MM:SS'

Mar.01,2000 15:45:17

22 'mmm.dd,yyyy' Mar.01,2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY' Q1-2001

28 'mmmyyyy' Mar2000

2-744

datestr

dateform
(number) dateform (string) Example

29 (ISO
8601)

'yyyy-mm-dd' 2000-03-01

30 (ISO
8601)

'yyyymmddTHHMMSS' 20000301T154517

31 'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

Note dateform numbers 0, 1, 2, 6, 13, 14, 15, 16, and 23 produce a
string suitable for input to datenum or datevec. Other date string
formats do not work with these functions unless you specify a date form
in the function call.

Note For date formats that specify only a time (i.e., dateform numbers
13, 14, 15, and 16), MATLAB sets the date to January 1 of the current
year.

Time formats like 'h:m:s', 'h:m:s.s', 'h:m pm', ... can also be part
of the input array S. If you do not specify a format string F, or if you
specify F as -1, the date string format defaults to the following:

1 If S contains date information only, e.g., 01-Mar-1995

16 If S contains time information only, e.g., 03:45 PM

0 If S is a date vector, or a string that contains both date
and time information, e.g., 01-Mar-1995 03:45

The following table shows the string symbols to use in specifying a
free-form format for the output date string. MATLAB interprets these
symbols according to your computer’s language setting and the current
MATLAB language setting.

2-745

datestr

Note You cannot use more than one format specifier for any date or
time field. For example, datestr(n, 'dddd dd mmmm') specifies two
formats for the day of the week, and thus returns an error.

Free-Form Date Format Specifiers

Symbol Interpretation Example

yyyy Show year in full. 1990, 2002

yy Show year in two digits. 90, 02

mmmm Show month using full
name.

March, December

mmm Show month using first
three letters.

Mar, Dec

mm Show month in two digits. 03, 12

m Show month using
capitalized first letter.

M, D

dddd Show day using full name. Monday, Tuesday

ddd Show day using first three
letters.

Mon, Tue

dd Show day in two digits. 05, 20

d Show day using
capitalized first letter.

M, T

HH Show hour in two digits
(no leading zeros when
free-form specifier AM or
PM is used (see last entry
in this table)).

05, 5 AM

MM Show minute in two
digits.

12, 02

2-746

datestr

Symbol Interpretation Example

SS Show second in two digits. 07, 59

FFF Show millisecond in three
digits.

.057

AM or PM Append AM or PM to date
string (see note below).

3:45:02 PM

Note Free-form specifiers AM and PM from the table above are identical.
They do not influence which characters are displayed following the time
(AM versus PM), but only whether or not they are displayed. MATLAB
selects AM or PM based on the time entered.

Remarks A vector of three or six numbers could represent either a single date
vector, or a vector of individual serial date numbers. For example,
the vector [2000 12 15 11 45 03] could represent either 11:45:03
on December 15, 2000 or a vector of date numbers 2000, 12, 15,
etc.. MATLAB uses the following general rule in interpreting vectors
associated with dates:

• A 3- or 6-element vector having a first element within an approximate
range of 500 greater than or less than the current year is considered
by MATLAB to be a date vector. Otherwise, it is considered to be
a vector of serial date numbers.

To specify dates outside of this range as a date vector, first convert the
vector to a serial date number using the datenum function as shown
here:

datestr(datenum([1400 12 15 11 45 03]), ...
'mmm.dd,yyyy HH:MM:SS')

ans =
Dec.15,1400 11:45:03

2-747

datestr

Examples Return the current date and time in a string using the default format, 0:

datestr(now)

ans =
28-Mar-2005 15:36:23

Reformat the date and time, and also show milliseconds:

dt = datestr(now, 'mmmm dd, yyyy HH:MM:SS.FFF AM')
dt =

March 28, 2005 3:37:07.952 PM

Format the same showing only the date and in the mm/dd/yy format.
Note that you can specify this format either by number or by string.

datestr(now, 2) -or- datestr(now, 'mm/dd/yy')

ans =
03/28/05

Display the returned date string using your own format made up of
symbols shown in the Free-Form Date Format Specifiers on page 2-746
table above.

datestr(now, 'dd.mm.yyyy')

ans =
28.03.2005

Convert a nonstandard date form into a standard MATLAB date form
by first converting to a date number and then to a string:

datestr(datenum('28.03.2005', 'dd.mm.yyyy'), 2)

ans =
03/28/05

See Also datenum, datevec, date, clock, now, datetick

2-748

datetick

Purpose Date formatted tick labels

Syntax datetick(tickaxis)
datetick(tickaxis,dateform)
datetick(...,'keeplimits')
datetick(...,'keepticks')
datetick(axes_handle,...)

Description datetick(tickaxis) labels the tick lines of an axis using dates,
replacing the default numeric labels. tickaxis is the string 'x', 'y', or
'z'. The default is 'x'. datetick selects a label format based on the
minimum and maximum limits of the specified axis.

datetick(tickaxis,dateform) formats the labels according to the
integer dateform (see table). To produce correct results, the data for the
specified axis must be serial date numbers (as produced by datenum).

dateform (number) dateform (string) Example

0 ’dd-mmm-yyyy
HH:MM:SS’

01-Mar-2000 15:45:17

1 ’dd-mmm-yyyy’ 01-Mar-2000

2 ’mm/dd/yy’ 03/01/00

3 ’mmm’ Mar

4 ’m’ M

5 ’mm’ 03

6 ’mm/dd’ 03/01

7 ’dd’ 01

8 ’ddd’ Wed

9 ’d’ W

10 ’yyyy’ 2000

11 ’yy’ 00

2-749

datetick

dateform (number) dateform (string) Example

12 ’mmmyy’ Mar00

13 ’HH:MM:SS’ 15:45:17

14 ’HH:MM:SS PM’ 3:45:17 PM

15 ’HH:MM’ 15:45

16 ’HH:MM PM’ 3:45 PM

17 ’QQ-YY’ Q1 01

18 ’QQ’ Q1

19 ’dd/mm' 01/03

20 ’dd/mm/yy’ 01/03/00

21 ’mmm.dd.yyyy
HH:MM:SS’

Mar.01,2000
15:45:17

22 ’mmm.dd.yyyy' Mar.01.2000

23 ’mm/dd/yyyy’ 03/01/2000

24 ’dd/mm/yyyy’ 01/03/2000

25 ’yy/mm/dd’ 00/03/01

26 ’yyyy/mm/dd’ 2000/03/01

27 ’QQ-YYYY’ Q1-2001

28 ’mmmyyyy’ Mar2000

datetick(...,'keeplimits') changes the tick labels to date-based
labels while preserving the axis limits.

datetick(...,'keepticks') changes the tick labels to date-based
labels without changing their locations.

You can use both keeplimits and keepticks in the same call to
datetick.

datetick(axes_handle,...) uses the axes specified by the handle ax
instead of the current axes.

2-750

datetick

Remarks datetick calls datestr to convert date numbers to date strings.

To change the tick spacing and locations, set the appropriate axes
property (i.e., XTick, YTick, or ZTick) before calling datetick.

Example Consider graphing population data based on the 1990 U.S. census:

t = (1900:10:1990)'; % Time interval
p = [75.995 91.972 105.711 123.203 131.669 ...
150.697 179.323 203.212 226.505 249.633]'; % Population

plot(datenum(t,1,1),p) % Convert years to date numbers and plot
grid on
datetick('x',11) % Replace x-axis ticks with 2-digit year
labels

2-751

datetick

See Also The axes properties XTick, YTick, and ZTick

datenum, datestr

“Annotating Plots” on page 1-86 for related functions

2-752

datevec

Purpose Convert date and time to vector of components

Syntax V = datevec(N)
V = datevec(S, F)
V = datevec(S, F, P)
V = datevec(S, P, F)
[Y, M, D, H, MN, S] = datevec(...)
V = datevec(S)
V = datevec(S, P)

Description datevec is one of three conversion functions that enable you to express
dates and times in any of three formats in MATLAB: a string (or date
string), a vector of date and time components (or date vector), or as
a numeric offset from a known date in time (or serial date number).
Here is an example of a date and time expressed in the three MATLAB
formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from 1-Jan-0000 to a specific date. The year 0000 is merely
a reference point and is not intended to be interpreted as a real year
in time.

V = datevec(N) converts one or more date numbers N to date vectors V.
Input argument N can be a scalar, vector, or multidimensional array of
positive date numbers. datevec returns an m-by-6 matrix containing m
date vectors, where m is the total number of date numbers in N.

V = datevec(S, F) converts one or more date strings S to date vectors
V using format string F to interpret the date strings in S. Input argument
S can be a cell array of strings or a character array where each row
corresponds to one date string. All of the date strings in S must have the
same format which must be composed of date format symbols according
to the table “Free-Form Date Format Specifiers” in the datestr help.

2-753

datevec

Formats with 'Q' are not accepted by datevec. datevec returns an
m-by-6 matrix of date vectors, where m is the number of date strings in S.

Certain formats may not contain enough information to compute a date
vector. In those cases, hours, minutes, and seconds default to 0, days
default to 1, months default to January, and years default to the current
year. Date strings with two character years are interpreted to be within
the 100 years centered around the current year.

V = datevec(S, F, P) converts the date string S to a date vector V
using date format F and pivot year P. The pivot year is the starting year
of the 100-year range in which a two-character year resides. The default
pivot year is the current year minus 50 years.

V = datevec(S, P, F) is the same as the syntax shown above, except
the order of the last two arguments are switched.

[Y, M, D, H, MN, S] = datevec(...) takes any of the two syntaxes
shown above and returns the components of the date vector as
individual variables. datevec does not return milliseconds in a separate
output, but as a fractional part of the seconds (S) output.

V = datevec(S) converts date string S to date vector V. Input argument
S must be in one of the date formats 0, 1, 2, 6, 13, 14, 15, 16, or 23 as
defined in the reference page for the datestr function. This calling
syntax is provided for backward compatibility, and is significantly
slower than the syntax which specifies the format string. If the format
is known, the V = datevec(S, F) syntax is recommended.

V = datevec(S, P) converts the date string S using pivot year P. If the
format is known, the V = datevec(S, F, P) or V = datevec(S, P,
F) syntax should be used.

Note If more than one input argument is used, the first argument must
be a date string or array of date strings.

When creating your own date vector, you need not make the components
integers. Any components that lie outside their conventional ranges

2-754

datevec

affect the next higher component (so that, for instance, the anomalous
June 31 becomes July 1). A zeroth month, with zero days, is allowed.

Note The vectorized calling syntax can offer significant performance
improvement for large arrays.

Examples Obtain a date vector using a string as input:

format short g

datevec('March 28, 2005 3:37:07.952 PM')
ans =

2005 3 28 15 37 7.952

Obtain a date vector using a serial date number as input:

t = datenum('March 28, 2005 3:37:07.952 PM')
t =

7.324e+005

datevec(t)
ans =

2005 3 28 15 37 7.952

Assign elements of the returned date vector:

[y, m, d, h, mn, s] = datevec('March 28, 2005 3:37:07.952 PM');

sprintf('Date: %d/%d/%d Time: %d:%d:%2.3f\n', m, d, y, h, mn, s)

ans =

Date: 3/28/2005 Time: 15:37:7.952

2-755

datevec

Use free-form date format 'dd.mm.yyyy' to indicate how you want a
nonstandard date string interpreted:

datevec('28.03.2005', 'dd.mm.yyyy')

ans = 2005 3 28 0 0 0

See Also datenum, datestr, date, clock, now, datetick

2-756

dbclear

Purpose Clear breakpoints

GUI
Alternatives

In the Editor/Debugger, click to clear a breakpoint, or to clear all
breakpoints. For details, see “Disabling and Clearing Breakpoints”.

Syntax dbclear all
dbclear in mfile ...
dbclear if error ...
dbclear if warning ...
dbclear if naninf
dbclear if infnan

Description dbclear all removes all breakpoints in all M-files, as well as
breakpoints set for errors, caught errors, caught error identifiers,
warnings, warning identifiers, and naninf/infnan.

dbclear in mfile ... formats are listed here:

Format Action

dbclear in mfile Removes all breakpoints in mfile.

dbclear in mfile at
lineno

Removes the breakpoint set at line number lineno in
mfile.

dbclear in mfile at
lineno@

Removes the breakpoint set in the anonymous function at
line number lineno in mfile.

dbclear in mfile at
lineno@n

Removes the breakpoint set in the nthe anonymous
function at line number lineno in mfile.

dbclear in mfile at
subfun

Removes all breakpoints in subfunction subfun in mfile.

dbclear if error ... formats are listed here:

2-757

dbclear

Format Action

dbclear if error Removes the breakpoints set using the dbstop if error
and dbstop if error identifier statements.

dbclear if error
identifier

Removes the breakpoint set using dbstop if error
identifier for the specified identifier. Running this
produces an error if dbstop if error or dbstop if
error all is set.

dbclear if caught error Removes the breakpoints set using the dbstop if caught
error and dbstop if caught error identifier
statements.

dbclear if caught error
identifier

Removes the breakpoints set using the dbstop if caught
error identifier statement for the specified identifier.
Running this produces an error if dbstop if caught
error or dbstop if caught error all is set.

dbclear if warning ... formats are listed here:

dbclear if warning Removes the breakpoints set using the dbstop if
warning and dbstop if warning identifier statements.

dbclear if warning
identifier

Removes the breakpoint set using dbstop if warning
identifier for the specified identifier. Running this
produces an error if dbstop if warning or dbstop if
warning all is set.

dbclear if naninf removes the breakpoint set by dbstop if naninf
or dbstop if infnan.

dbclear if infnan removes the breakpoint set by dbstop if infnan
or dbstop if naninf.

Remarks The at and in keywords are optional.

In the syntax, mfile can be an M-file, or the path to a function within
a file. For example

dbclear in foo>myfun

2-758

dbclear

clears the breakpoint at the myfun function in the file foo.m.

See Also dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup, partialpath

2-759

dbcont

Purpose Resume execution

GUI
Alternatives

Select Debug > Continue from most desktop tools, or in the
Editor/Debugger, click .

Syntax dbcont

Description dbcont resumes execution of an M-file from a breakpoint. Execution
continues until another breakpoint is encountered, a pause condition is
met, an error occurs, or MATLAB returns to the base workspace prompt.

Note If you want to edit an M-file as a result of debugging, it is best to
first quit debug mode and then edit and save changes to the M-file. If
you edit an M-file while paused in debug mode, you can get unexpected
results when you resume execution of the file and the results might
not be reliable.

See Also dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-760

dbdown

Purpose Change local workspace context when in debug mode

GUI
Alternatives

Use the Stack field in the Editor/Debugger or Workspace
browser.

Syntax dbdown

Description dbdown changes the current workspace context to the workspace of the
called M-file when a breakpoint is encountered. You must have issued
the dbup function at least once before you issue this function. dbdown is
the opposite of dbup.

Multiple dbdown functions change the workspace context to each
successively executed M-file on the stack until the current workspace
context is the current breakpoint. It is not necessary, however, to move
back to the current breakpoint to continue execution or to step to the
next line.

See Also dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-761

dblquad

Purpose Numerically evaluate double integral

Syntax q = dblquad(fun,xmin,xmax,ymin,ymax)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)

Description q = dblquad(fun,xmin,xmax,ymin,ymax) calls the quad function to
evaluate the double integral fun(x,y) over the rectangle xmin <= x
<= xmax, ymin <= y <= ymax. fun is a function handle. See “Function
Handles” in the MATLAB Programming documentation for more
information. fun(x,y) must accept a vector x and a scalar y and return
a vector of values of the integrand.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function fun, if necessary.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol) uses a tolerance tol
instead of the default, which is 1.0e-6.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) uses the
quadrature function specified as method, instead of the default
quad. Valid values for method are @quadl or the function handle of a
user-defined quadrature method that has the same calling sequence
as quad and quadl.

Example Pass M-file function handle @integrnd to dblquad:

Q = dblquad(@integrnd,pi,2*pi,0,pi);

where the M-file integrnd.m is

function z = integrnd(x, y)
z = y*sin(x)+x*cos(y);

Pass anonymous function handle F to dblquad:

F = @(x,y)y*sin(x)+x*cos(y);
Q = dblquad(F,pi,2*pi,0,pi);

2-762

dblquad

The integrnd function integrates y*sin(x)+x*cos(y) over the square
pi <= x <= 2*pi, 0 <= y <= pi. Note that the integrand can be
evaluated with a vector x and a scalar y.

Nonsquare regions can be handled by setting the integrand to zero
outside of the region. For example, the volume of a hemisphere is

dblquad(@(x,y)sqrt(max(1-(x.^2+y.^2),0)), -1, 1, -1, 1)

or

dblquad(@(x,y)sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1), -1, 1, -1, 1)

See Also quad, quadl, triplequad, function_handle (@), “Anonymous
Functions”

2-763

dbmex

Purpose Enable MEX-file debugging

Syntax dbmex on
dbmex off
dbmex stop

Description dbmex on enables MEX-file debugging for UNIX platforms. It is not
supported on the Sun Solaris platform. To use this option, first start
MATLAB from within a debugger by typing matlab -Ddebugger, where
debugger is the name of the debugger.

dbmex off disables MEX-file debugging.

dbmex stop returns to the debugger prompt.

Remarks On Sun Solaris platforms, dbmex is not supported.
See the Technical Support solution 1-17Z0R at
http://www.mathworks.com/support/solutions/data/1-17Z0R.html
for an alternative method of debugging.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbtype, dbup

2-764

http://www.mathworks.com/support/solutions/data/1-17Z0R.html

dbquit

Purpose Quit debug mode

GUI
Alternative

From most desktop tools, select Debug > Exit Debug Mode, or in the
Editor/Debugger, click .

Syntax dbquit
dbquit('all')
dbquit all

Description dbquit terminates debug mode. The Command Window then displays
the standard prompt (>>). The M-file being processed is not completed
and no results are returned. All breakpoints remain in effect. As an
alternative to dbquit, press Shift+F5.

If you debug file1 and step into file2, running dbquit terminates
debugging for both files. However, if you debug file3 and also debug
file4, running dbquit terminates debugging for file4, but file3
remains in debug mode until you run dbquit again.

dbquit('all') or the command form, dbquit all, ends debugging
for all files at once.

Examples This example illustrates the use of dbquit relative to dbquit('all').
Set breakpoints in and run file1 and file2:

>> dbstop in file1
>> dbstop in file2
>> file1
K>> file2
K>> dbstack

MATLAB returns

K>> dbstack
In file1 at 11
In file2 at 22

If you use the dbquit syntax

2-765

dbquit

K>> dbquit

MATLAB ends debugging for file2 but file1 is still in debug mode
as shown here

K>> dbstack
in file1 at 11

Run dbquit again to exit debug mode for file1.

Alternatively, dbquit('all') ends debugging for both files at once:

K>> dbstack
In file1 at 11
In file2 at 22

dbquit('all')
dbstack

returns no result.

See Also dbclear, dbcont, dbdown, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-766

dbstack

Purpose Function call stack

GUI
Alternatives

Use the Stack field in the Editor/Debugger or Workspace
browser.

Syntax dbstack
dbstack(n)
dbstack('-completenames')
[ST,I] = dbstack

Description dbstack displays the line numbers and M-file names of the function
calls that led to the current breakpoint, listed in the order in which they
were executed. The line number of the most recently executed function
call (at which the current breakpoint occurred) is listed first, followed
by its calling function, which is followed by its calling function, and so
on, until the topmost M-file function is reached. Each line number is a
hyperlink you can click to go directly to that line in the Editor/Debugger.
The notation functionname>subfunctionname is used to describe the
subfunction location.

dbstack(n) omits from the display the first n frames. This is useful
when issuing a dbstack from within, say, an error handler.

dbstack('-completenames') outputs the “complete name“ (the absolute
file name and the entire sequence of functions that nests the function in
the stack frame) of each function in the stack.

Either none, one, or both n and '-completenames' can appear. If both
appear, the order is irrelevant.

[ST,I] = dbstack returns the stack trace information in an m-by-1
structure ST with the fields

file The file in which the function appears. This
field will be the empty string if there is no file.

name Function name within the file.

line Function line number.

2-767

dbstack

The current workspace index is returned in I.

If you step past the end of an M-file, then dbstack returns a negative
line number value to identify that special case. For example, if the last
line to be executed is line 15, then the dbstack line number is 15 before
you execute that line and -15 afterwards.

Examples dbstack

In /usr/local/matlab/toolbox/matlab/cond.m at line 13
In test1.m at line 2
In test.m at line 3

See Also dbclear, dbcont, dbdown, dbquit, dbstatus, dbstep, dbstop, dbtype,
dbup, evalin, mfilename, whos

“Editing and Debugging M-Files” and “Examining Values”

2-768

dbstatus

Purpose List all breakpoints

GUI
Alternative

Breakpoint line numbers are displayed graphically via the breakpoint
icons when the file is open in the Editor/Debugger.

Syntax dbstatus
dbstatus mfile
dbstatus('-completenames')
s = dbstatus(...)

Description dbstatus lists all the breakpoints in effect including errors, caught
errors, warnings, and naninfs.

dbstatus mfile displays a list of the line numbers for which
breakpoints are set in the specified M-file, where mfile is an M-file
function name or a MATLAB relative partial pathname. Each line
number is a hyperlink you can click to go directly to that line in the
Editor/Debugger.

dbstatus('-completenames') displays, for each breakpoint, the
absolute filename and the sequence of functions that nest the function
containing the breakpoint.

s = dbstatus(...) returns breakpoint information in an m-by-1
structure with the fields listed in the following table. Use this
syntax to save breakpoint status and restore it at a later time using
dbstop(s)—see dbstop for an example.

name Function name.

file Full pathname for file containing breakpoints.

line Vector of breakpoint line numbers.

anonymous Vector of integers representing the anonymous
functions in the line field. For example, 2 means
the second anonymous function in that line. A
value of 0 means the breakpoint is at the start of
the line, not in an anonymous function.

2-769

dbstatus

expression Cell vector of breakpoint conditional expression
strings corresponding to lines in the line field.

cond Condition string ('error', 'caught error',
'warning', or 'naninf').

identifier When cond is 'error', 'caught error', or
'warning', a cell vector of MATLAB message
identifier strings for which the particular cond
state is set.

Use dbstatus class/function, dbstatus private/function, or
dbstatus class/private/function to determine the status for methods,
private functions, or private methods (for a class named class).

In all forms you can further qualify the function name with a
subfunction name, as in dbstatus function>subfunction.

Remarks In the syntax, mfile can be an M-file, or the path to a function within
a file. For example

Breakpoint for foo>mfun is on line 9

means there is a breakpoint at the myfun subfunction, which is line
9 in the file foo.m.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstep, dbstop, dbtype,
dbup, error, partialpath, warning

2-770

dbstep

Purpose Execute one or more lines from current breakpoint

GUI
Alternatives

As an alternative to dbstep, you can select Debug > Step or Step
In in most desktop tools, or click the Step or Step In buttons on the
Editor/Debugger toolbar.

Syntax dbstep
dbstep nlines
dbstep in
dbstep out

Description This function allows you to debug an M-file by following its execution
from the current breakpoint. At a breakpoint, the dbstep function steps
through execution of the current M-file one line at a time or at the rate
specified by nlines.

dbstep executes the next executable line of the current M-file. dbstep
steps over the current line, skipping any breakpoints set in functions
called by that line.

dbstep nlines executes the specified number of executable lines.

dbstep in steps to the next executable line. If that line contains a call
to another M-file function, execution will step to the first executable line
of the called M-file function. If there is no call to an M-file on that line,
dbstep in is the same as dbstep.

dbstep out runs the rest of the function and stops just after leaving
the function.

For all forms, MATLAB also stops execution at any breakpoint it
encounters.

2-771

dbstep

Note If you want to edit an M-file as a result of debugging, it is best to
first quit debug mode and then edit and save changes to the M-file. If
you edit an M-file while paused in debug mode, you can get unexpected
results when you resume execution of the file and the results might
not be reliable.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype,
dbup

2-772

dbstop

Purpose Set breakpoints

GUI
Alternative

Use the Debug menu in most desktop tools, or the context menu in
Editor/Debugger. See details.

Syntax dbstop in mfile ...
dbstop in nonmfile
dbstop if error ...
dbstop if warning ...
dbstop if naninf
dbstop if infnan
dbstop(s)

Description dbstop in mfile ... formats are listed here:

Format Action Additional Information

dbstop in mfile Temporarily stops execution
of running mfile at the
first executable line, putting
MATLAB in debug mode.
mfile must be in a directory
that is on the search path, or
in the current directory. mfile
can be an M-file, or the path to
a function (subfun) within the
file, using the notation mfile
> subfun. The in keyword is
optional.

If you have graphical
debugging enabled, the
MATLAB Debugger opens
with a breakpoint at the first
executable line of mfile. You
can then use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

2-773

dbstop

Format Action Additional Information

dbstop in mfile at
lineno

Temporarily stops execution
of running mfile just prior
to execution of the line whose
number is lineno, putting
MATLAB in debug mode. If
that line is not executable,
execution stops and the
breakpoint is set at the next
executable line following
lineno. mfile must be in
a directory that is on the
search path, or in the current
directory. The at keyword is
optional.

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at line
lineno. When execution stops,
you can use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode

dbstop in mfile at
lineno@

Stops just after any call to the
first anonymous function in the
specified line number in mfile.

dbstop in mfile at
lineno@n

Stops just after any call to the
nthe anonymous function in the
specified line number in mfile.

dbstop in mfile at
subfun

Temporarily stops execution
of running mfile just prior to
execution of the subfunction
subfun, putting MATLAB in
debug mode. mfile must be
in a directory that is on the
search path, or in the current
directory.

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at the
subfunction subfun. You
can then use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

2-774

dbstop

Format Action Additional Information

dbstop in mfile
at lineno if
expression

Temporarily stops execution
of running mfile, just prior
to execution of the line
whose number is lineno,
putting MATLAB in debug
mode. Execution stops
only if expression evaluates
to true. expression is
evaluated (as if by eval), in
mfile’s workspace when the
breakpoint is encountered,
and must evaluate to a scalar
logical value (1 or 0 for true
or false). If that line is not
executable, execution stops
and the breakpoint is set
at the next executable line
following lineno. mfile must
be in a directory that is on the
search path, or in the current
directory.

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at line
lineno. When execution stops,
you can use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

dbstop in mfile
at lineno@ if
expression

Stops just after any call to the
first anonymous function in
the specified line number in
mfile if expression evaluates
to logical 1 (true).

dbstop in mfile
at lineno@n if
expression

Stops just after any call to the
nthe anonymous function in
the specified line number in
mfile if expression evaluates
to logical 1 (true).

2-775

dbstop

Format Action Additional Information

dbstop in mfile if
expression

Temporarily stops execution
of running mfile, at the
first executable line, putting
MATLAB in debug mode.
Execution stops only if
expression evaluates to
logical 1 (true). expression
is evaluated (as if by eval),
in mfile’s workspace when
the breakpoint is encountered,
and must evaluate to a scalar
logical value (0 or 1 for true
or false). mfile must be in a
directory on the search path, or
in the current directory

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at the first
executable line of mfile. You
can then use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

dbstop in mfile
at subfun if
expression

Temporarily stops execution
of running mfile, just prior to
execution of the subfunction
subfun, putting MATLAB in
debug mode. Execution stops
only if expression evaluates
to logical 1 (true). expression
is evaluated (as if by eval),
in mfile’s workspace when
the breakpoint is encountered,
and must evaluate to a scalar
logical value (0 or 1 for true
or false). mfile must be in a
directory on the search path, or
in the current directory

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at the
subfunction specified by
subfun. You can then use the
debugging utilities, review the
workspace, or issue any valid
MATLAB function. Use dbcont
or dbstep to resume execution
of mfile. Use dbquit to exit
from debug mode.

dbstop in nonmfile temporarily stops execution of the running
M-file at the point where nonmfile is called. This puts MATLAB in
debug mode, where nonmfile is, for example, a built-in or MDL-file.
MATLAB issues a warning because it cannot actually stop in the file;

2-776

dbstop

rather MATLAB stops prior to the file’s execution. Once stopped,
you can examine values and code around that point in the execution.
Use dbstop in nonmfile with caution because the debugger stops in
M-files it uses for running and debugging if they contain nonmfile. As
a result, some debugging features do not operate as expected, such as
typing help functionname at the K>> prompt.

dbstop if error ... formats are listed here:

Format Action

dbstop if error Stops execution when any M-file you subsequently run produces
a run-time error, putting MATLAB in debug mode, paused at the
line that generated the error. The errors that stop execution do not
include run-time errors that are detected within a try...catch
block. You cannot resume execution after an uncaught run-time
error. Use dbquit to exit from debug mode.

dbstop if error
identifier

Stops execution when any M-file you subsequently run produces a
run-time error whose message identifier is identifier, putting
MATLAB in debug mode, paused at the line that generated the
error. The errors that stop execution do not include run-time errors
that are detected within a try...catch block. You cannot resume
execution after an uncaught run-time error. Use dbquit to exit
from debug mode.

dbstop if caught
error

Stops execution when any M-file you subsequently run produces a
run-time error, putting MATLAB in debug mode, paused at the line
in the try portion of the block that generated the error. The errors
that stop execution are those detected within a try...catch block.

dbstop if caught
error identifier

Stops execution when any M-file you subsequently run produces a
run-time error whose message identifier is identifier, putting
MATLAB in debug mode, paused at the line in the try portion of
the block that generated the error. The errors that stop execution
are those detected within a try...catch block.

dbstop if warning ... formats are listed here:

2-777

dbstop

Format Action

dbstop if warning Stops execution when any M-file you subsequently run produces
a run-time warning, putting MATLAB in debug mode, paused at
the line that generated the warning. Use dbcont or dbstep to
resume execution.

dbstop if warning
identifier

Stops execution when any M-file you subsequently run produces a
runtime warning whose message identifier is identifier, putting
MATLAB in debug mode, paused at the line that generated the
warning. Use dbcont or dbstep to resume execution.

dbstop if naninf or dbstop if infnan stops execution when any
M-file you subsequently run produces an infinite value (Inf) or a
value that is not a number (NaN) as a result of an operator, function
call, or scalar assignment, putting MATLAB in debug mode, paused
immediately after the line where Inf or NaN was encountered. For
convenience, you can use either naninf or infnan—they perform in
exactly the same manner. Use dbcont or dbstep to resume execution.
Use dbquit to exit from debug mode.

dbstop(s) restores breakpoints previously saved to the structure s
using s=dbstatus. The files for which the breakpoints have been saved
need to be on the search path or in the current directory. In addition,
because the breakpoints are assigned by line number, the lines in the
file need to be the same as when the breakpoints were saved, or the
results are unpredictable. See the example “Restore Saved Breakpoints”
on page 2-781 and dbstatus for more information.

Remarks Note that MATLAB could become nonresponsive if it stops at a
breakpoint while displaying a modal dialog box or figure that your
M-file creates. In that event, use Ctrl+C to go the MATLAB prompt.

To open the M-file in the Editor/Debugger when execution reaches a
breakpoint, select Debug > Open M-Files When Debugging.

To stop at each pass through a for loop, do not set the breakpoint at
the for statement. For example, in

2-778

dbstop

for n = 1:10
m = n+1;

end

MATLAB executes the for statement only once, which is efficient.
Therefore, when you set a breakpoint at the for statement and step
through the file, you only stop at the for statement once. Instead place
the breakpoint at the next line, m=n+1 to stop at each pass through
the loop.

Examples The file buggy, used in these examples, consists of three lines.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Stop at First Executable Line

The statements

dbstop in buggy
buggy(2:5)

stop execution at the first executable line in buggy:

n = length(x);

The function

dbstep

advances to the next line, at which point you can examine the value of n.

Stop if Error

Because buggy only works on vectors, it produces an error if the input x
is a full matrix. The statements

dbstop if error
buggy(magic(3))

2-779

dbstop

produce

??? Error using ==> ./
Matrix dimensions must agree.
Error in ==> c:\buggy.m
On line 3 ==> z = (1:n)./x;
K>>

and put MATLAB in debug mode.

Stop if InfNaN

In buggy, if any of the elements of the input x is zero, a division by
zero occurs. The statements

dbstop if naninf
buggy(0:2)

produce

Warning: Divide by zero.
> In c:\buggy.m at line 3
K>>

and put MATLAB in debug mode.

Stop at Function in File

In this example, MATLAB stops at the newTemp function in the M-file
yearlyAvgs:

dbstop in yearlyAvgs>newTemp

Stop at Non M-File

In this example, MATLAB stops at the built-in function clear when
you run myfile.m.

dbstop in clear; myfile

MATLAB issues a warning, but permits the stop:

2-780

dbstop

Warning: MATLAB debugger can only stop in M-files, and
"m_interpreter>clear" is not an M-file.
Instead, the debugger will stop at the point right before
"m_interpreter>clear" is called.

Execution stops in myfile at the point where the clear function is
called.

Restore Saved Breakpoints

1 Set breakpoints in myfile as follows:

dbstop at 12 in myfile
dbstop if error

2 Running dbstatus shows

Breakpoint for myfile is on line 12.
Stop if error.

3 Save the breakpoints to the structure s, and then save s to the
MAT-file myfilebrkpnts.

s = dbstatus
save myfilebrkpnts s

Use s=dbstatus('completenames') to save absolute pathnames
and the breakpoint function nesting sequence.

4 At this point, you can end the debugging session and clear all
breakpoints, or even end the MATLAB session.

When you want to restore the breakpoints, be sure all of the files
containing the breakpoints are on the search path or in the current
directory. Then load the MAT-file, which adds s to the workspace,
and restore the breakpoints as follows:

load myfilebrkpnts
dbstop(s)

2-781

dbstop

5 Verify the breakpoints by running dbstatus, which shows

dbstop at 12 in myfile
dbstop if error

If you made changes to myfile after saving the breakpoints, the
results from restoring the breakpoints are not predictable. For
example, if you added a new line prior to line 12 in myfile, the
breakpoint will now be set at the new line 12.

See Also assignin, break, dbclear, dbcont, dbdown, dbquit, dbstack,
dbstatus, dbstep, dbtype, dbup, evalin, keyboard, partialpath,
return, whos

2-782

dbtype

Purpose List M-file with line numbers

GUI
Alternatives

As an alternative to the dbtype function, you can see an M-file with line
numbers by opening it in the Editor/Debugger.

Syntax dbtype mfilename
dbtype mfilename start:end

Description The dbtype command is used to list an M-file with line numbers, which
is helpful when setting breakpoints with dbstop.

dbtype mfilename displays the contents of the specified M-file, with
the line number preceding each line. mfilename must be the full
pathname of an M-file, or a MATLAB relative partial pathname.

dbtype mfilename start:end displays the portion of the M-file
specified by a range of line numbers from start to end.

You cannot use dbtype for built-in functions.

Examples To see only the input and output arguments for a function, that is, the
first line of the M-file, use the syntax

dbtype mfilename 1

For example,

dbtype fileparts 1

returns

1 function [path, fname, extension,version] = fileparts(name)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbup, partialpath

2-783

dbup

Purpose Change local workspace context

GUI
Alternatives

As an alternative to the dbup function, you can select a different
workspace from the Stack field in the Editor/Debugger toolbar.

Syntax dbup

Description This function allows you to examine the calling M-file to determine
what led to the arguments’ being passed to the called function.

dbup changes the current workspace context, while the user is in the
debug mode, to the workspace of the calling M-file.

Multiple dbup functions change the workspace context to each previous
calling M-file on the stack until the base workspace context is reached.
(It is not necessary, however, to move back to the current breakpoint to
continue execution or to step to the next line.)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbtype

2-784

dde23

Purpose Solve delay differential equations (DDEs) with constant delays

Syntax sol = dde23(ddefun,lags,history,tspan)
sol = dde23(ddefun,lags,history,tspan,options)

Arguments ddefun Function handle that evaluates the
right side of the differential equations

.
The function must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current ,
y is a column vector that approximates

, and Z(:,j) approximates
for delay = lags(j). The output
is a column vector corresponding to

.

lags Vector of constant, positive delays .

history Specify history in one of three ways:

• A function of such that y = history(t)

returns the solution for as a
column vector

• A constant column vector, if is
constant

• The solution sol from a previous
integration, if this call continues that
integration

2-785

dde23

tspan Interval of integration as a vector [t0,tf]
with t0 < tf.

options Optional integration argument. A structure
you create using the ddeset function. See
ddeset for details.

Description sol = dde23(ddefun,lags,history,tspan) integrates the system
of DDEs

on the interval , where are constant, positive delays

and . ddefun is a function handle. See “Function Handles” in
the MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function ddefun, if necessary.

dde23 returns the solution as a structure sol. Use the auxiliary
function deval and the output sol to evaluate the solution at specific
points tint in the interval tspan = [t0,tf].

yint = deval(sol,tint)

The structure sol returned by dde23 has the following fields.

sol.x Mesh selected by dde23

sol.y Approximation to at the mesh points in
sol.x.

sol.yp Approximation to at the mesh points in
sol.x

sol.solver Solver name, 'dde23'

2-786

dde23

sol = dde23(ddefun,lags,history,tspan,options) solves as above
with default integration properties replaced by values in options, an
argument created with ddeset. See ddeset and “Initial Value Problems
for DDEs” in the MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol'
(1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all
components are 1e-6 by default).

Use the 'Jumps' option to solve problems with discontinuities in
the history or solution. Set this option to a vector that contains the
locations of discontinuities in the solution prior to t0 (the history) or in
coefficients of the equations at known values of after t0.

Use the 'Events' option to specify a function that dde23 calls to find
where functions vanish. This
function must be of the form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth
event function in events:

• value(k) is the value of the kth event function.

• isterminal(k) = 1 if you want the integration to terminate at a
zero of this event function and 0 otherwise.

• direction(k) = 0 if you want dde23 to compute all zeros of this
event function, +1 if only zeros where the event function increases,
and -1 if only zeros where the event function decreases.

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

2-787

dde23

sol.xe Row vector of locations of all events, i.e., times
when an event function vanished

sol.ye Matrix whose columns are the solution values
corresponding to times in sol.xe

sol.ie Vector containing indices that specify which event
occurred at the corresponding time in sol.xe

Examples This example solves a DDE on the interval [0, 5] with lags 1 and 0.2.
The function ddex1de computes the delay differential equations, and
ddex1hist computes the history for t <= 0.

Note The demo ddex1 contains the complete code for this example. To
see the code in an editor, click the example name, or type edit ddex1 at
the command line. To run the example type ddex1 at the command line.

sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[0, 5]);

This code evaluates the solution at 100 equally spaced points in the
interval [0,5], then plots the result.

tint = linspace(0,5);
yint = deval(sol,tint);
plot(tint,yint);

ddex1 shows how you can code this problem using subfunctions. For
more examples see ddex2.

Algorithm dde23 tracks discontinuities and integrates with the explicit
Runge-Kutta (2,3) pair and interpolant of ode23. It uses iteration to
take steps longer than the lags.

See Also ddesd, ddeget, ddeset, deval, function_handle (@)

2-788

dde23

References [1] Shampine, L.F. and S. Thompson, “Solving DDEs in MATLAB,
“Applied Numerical Mathematics, Vol. 37, 2001, pp. 441-458.

[2] Kierzenka, J., L.F. Shampine, and S. Thompson, “Solving
Delay Differential Equations with DDE23,” available at
www.mathworks.com/dde_tutorial.

2-789

http://www.mathworks.com/dde_tutorial

ddeadv

Purpose Set up advisory link

Syntax

Description ddeadv sets up an advisory link between MATLAB and a server
application. When the data identified by the item argument changes,
the string specified by the callback argument is passed to the eval
function and evaluated. If the advisory link is a hot link, DDE modifies
upmtx, the update matrix, to reflect the data in item.

If you omit optional arguments that are not at the end of the argument
list, you must substitute the empty matrix for the missing argument(s).

If successful, ddeadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item name for the
advisory link. Changing the data identified by
item at the server triggers the advisory link.

callback String specifying the callback that is evaluated
on update notification. Changing the data
identified by item at the server causes
callback to get passed to the eval function to
be evaluated.

upmtx (optional) String specifying the name of a matrix that
holds data sent with an update notification. If
upmtx is included, changing item at the server
causes upmtx to be updated with the revised
data. Specifying upmtx creates a hot link.
Omitting upmtx or specifying it as an empty
string creates a warm link. If upmtx exists in
the workspace, its contents are overwritten. If
upmtx does not exist, it is created.

2-790

ddeadv

format (optional) Two-element array specifying the format of the
data to be sent on update. The first element
specifies the Windows clipboard format to use
for the data. The only currently supported
format is cf_text, which corresponds to a
value of 1. The second element specifies the
type of the resultant matrix. Valid types are
numeric (the default, which corresponds to a
value of 0) and string (which corresponds to a
value of 1). The default format array is [1 0].

timeout (optional) Scalar specifying the time-out limit for this
operation. timeout is specified in milliseconds.
(1000 milliseconds = 1 second). If advisory link
is not established within timeout milliseconds,
the function fails. The default value of timeout
is three seconds.

Examples Set up a hot link between a range of cells in Excel (Row 1, Column 1
through Row 5, Column 5) and the matrix x. If successful, display the
matrix:

rc = ddeadv(channel, 'r1c1:r5c5', 'disp(x)', 'x');

Communication with Excel must have been established previously with
a ddeinit command.

See Also ddeexec, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

2-791

ddeexec

Purpose Send string for execution

Syntax

Description ddeexec sends a string for execution to another application via an
established DDE conversation. Specify the string as the command
argument.

If you omit optional arguments that are not at the end of the argument
list, you must substitute the empty matrix for the missing argument(s).

If successful, ddeexec returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

command String specifying the command to be executed.

item (optional) String specifying the DDE item name for
execution. This argument is not used for many
applications. If your application requires this
argument, it provides additional information for
command. Consult your server documentation for
more information.

timeout (optional) Scalar specifying the time-out limit for this
operation. timeout is specified in milliseconds.
(1000 milliseconds = 1 second). The default value
of timeout is three seconds.

Examples Given the channel assigned to a conversation, send a command to Excel:

rc = ddeexec(channel,'[formula.goto("r1c1")]')

Communication with Excel must have been established previously with
a ddeinit command.

See Also ddeadv, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

2-792

ddeget

Purpose Extract properties from delay differential equations options structure

Syntax val = ddeget(options,'name')
val = ddeget(options,'name',default)

Description val = ddeget(options,'name') extracts the value of the named
property from the structure options, returning an empty matrix if
the property value is not specified in options. It is sufficient to type
only the leading characters that uniquely identify the property. Case is
ignored for property names. [] is a valid options argument.

val = ddeget(options,'name',default) extracts the named property
as above, but returns val = default if the named property is not
specified in options. For example,

val = ddeget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also dde23, ddesd, ddeset

2-793

ddeinit

Purpose Initiate Dynamic Data Exchange (DDE) conversation

Syntax channel = ddeinit('service','topic')

Description channel = ddeinit('service','topic') returns a channel handle
assigned to the conversation, which is used with other MATLAB DDE
functions. 'service' is a string specifying the service or application
name for the conversation. 'topic' is a string specifying the topic for
the conversation.

Examples To initiate a conversation with Excel for the spreadsheet 'stocks.xls':

channel = ddeinit('excel','stocks.xls')

channel =
0.00

See Also ddeadv, ddeexec, ddepoke, ddereq, ddeterm, ddeunadv

2-794

ddepoke

Purpose Send data to application

Syntax

Description ddepoke sends data to an application via an established DDE
conversation. ddepoke formats the data matrix as follows before
sending it to the server application:

• String matrices are converted, element by element, to characters and
the resulting character buffer is sent.

• Numeric matrices are sent as tab-delimited columns and
carriage-return, line-feed delimited rows of numbers. Only the real
part of nonsparse matrices are sent.

If you omit optional arguments that are not at the end of the argument
list, you must substitute the empty matrix for the missing argument(s).

If successful, ddepoke returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item for the data
sent. Item is the server data entity that is to
contain the data sent in the data argument.

data Matrix containing the data to send.

format (optional) Scalar specifying the format of the data
requested. The value indicates the Windows
clipboard format to use for the data transfer.
The only format currently supported is
cf_text, which corresponds to a value of 1.

timeout (optional) Scalar specifying the time-out limit for
this operation. timeout is specified in
milliseconds. (1000 milliseconds = 1 second).
The default value of timeout is three seconds.

2-795

ddepoke

Examples Assume that a conversation channel with Excel has previously been
established with ddeinit. To send a 5-by-5 identity matrix to Excel,
placing the data in Row 1, Column 1 through Row 5, Column 5:

rc = ddepoke(channel, 'r1c1:r5c5', eye(5));

See Also ddeadv, ddeexec, ddeinit, ddereq, ddeterm, ddeunadv

2-796

ddereq

Purpose Request data from application

Syntax

Description ddereq requests data from a server application via an established DDE
conversation. ddereq returns a matrix containing the requested data or
an empty matrix if the function is unsuccessful.

If you omit optional arguments that are not at the end of the argument
list, you must substitute the empty matrix for the missing argument(s).

If successful, ddereq returns a matrix containing the requested data in
variable, data. Otherwise, it returns an empty matrix.

Arguments channel Conversation channel from ddeinit.

item String specifying the server application’s DDE
item name for the data requested.

format (optional) Two-element array specifying the format of
the data requested. The first element specifies
the Windows clipboard format to use. The
only currently supported format is cf_text,
which corresponds to a value of 1. The second
element specifies the type of the resultant
matrix. Valid types are numeric (the default,
which corresponds to 0) and string (which
corresponds to a value of 1). The default format
array is [1 0].

timeout (optional) Scalar specifying the time-out limit for this
operation. timeout is specified in milliseconds.
(1000 milliseconds = 1 second). The default
value of timeout is three seconds.

Examples Assume that you have an Excel spreadsheet stocks.xls. This
spreadsheet contains the prices of three stocks in row 3 (columns 1

2-797

ddereq

through 3) and the number of shares of these stocks in rows 6 through 8
(column 2). Initiate conversation with Excel with the command

channel = ddeinit('excel','stocks.xls')

DDE functions require the rxcy reference style for Excel worksheets.
In Excel terminology the prices are in r3c1:r3c3 and the shares in
r6c2:r8c2.

Request the prices from Excel:

prices = ddereq(channel,'r3c1:r3c3')

prices =
42.50
15.00
78.88

Next, request the number of shares of each stock:

shares = ddereq(channel, 'r6c2:r8c2')

shares =
100.00
500.00
300.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddeterm, ddeunadv

2-798

ddesd

Purpose Solve delay differential equations (DDEs) with general delays

Syntax sol = ddesd(ddefun,delays,history,tspan)
sol = ddesd(ddefun,delays,history,tspan,options)

Arguments ddefun Function handle that evaluates the
right side of the differential equations

.
The function must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current , y is a
column vector that approximates , and
Z(:,j) approximates for delay
given as component of delays(t,y). The
output is a column vector corresponding to

.

delays Function handle that returns a column vector of
delays . The delays can depend on both
and . ddesd imposes the requirement that

by using min(,).

If all the delay functions have the form

, you can set the argument

delays to a constant vector delays .
With delay functions of this form, ddesd is used
exactly like dde23.

2-799

ddesd

history Specify history in one of three ways:

• A function of such that y = history(t)

returns the solution for as a
column vector

• A constant column vector, if is constant

• The solution sol from a previous integration,
if this call continues that integration

tspan Interval of integration as a vector [t0,tf] with
t0 < tf.

options Optional integration argument. A structure you
create using the ddeset function. See ddeset
for details.

Description sol = ddesd(ddefun,delays,history,tspan) integrates the system
of DDEs

on the interval , where delays can depend on both and

, and . Inputs ddefun and delays are function handles.
See “Function Handles” in the MATLAB Programming documentation
for more information.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the functions ddefun, delays, and history,
if necessary.

ddesd returns the solution as a structure sol. Use the auxiliary
function deval and the output sol to evaluate the solution at specific
points tint in the interval tspan = [t0,tf].

yint = deval(sol,tint)

2-800

ddesd

The structure sol returned by ddesd has the following fields.

sol.x Mesh selected by ddesd

sol.y Approximation to at the mesh points in
sol.x.

sol.yp Approximation to at the mesh points in
sol.x

sol.solver Solver name, 'ddesd'

sol = ddesd(ddefun,delays,history,tspan,options) solves as
above with default integration properties replaced by values in options,
an argument created with ddeset. See ddeset and “Initial Value
Problems for DDEs” in the MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol'
(1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all
components are 1e-6 by default).

Use the 'Events' option to specify a function that ddesd calls to find
where functions vanish. This
function must be of the form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth
event function in events:

• value(k) is the value of the kth event function.

• isterminal(k) = 1 if you want the integration to terminate at a
zero of this event function and 0 otherwise.

• direction(k) = 0 if you want ddesd to compute all zeros of this
event function, +1 if only zeros where the event function increases,
and -1 if only zeros where the event function decreases.

2-801

ddesd

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

sol.xe Row vector of locations of all events, i.e., times
when an event function vanished

sol.ye Matrix whose columns are the solution values
corresponding to times in sol.xe

sol.ie Vector containing indices that specify which event
occurred at the corresponding time in sol.xe

Examples The equation

sol = ddesd(@ddex1de,@ddex1delays,@ddex1hist,[0,5]);

solves a DDE on the interval [0,5] with delays specified by the function
ddex1delays and differential equations computed by ddex1de. The
history is evaluated for by the function ddex1hist. The solution is
evaluated at 100 equally spaced points in [0,5]:

tint = linspace(0,5);
yint = deval(sol,tint);

and plotted with

plot(tint,yint);

This problem involves constant delays. The delay function has the form

function d = ddex1delays(t,y)
%DDEX1DELAYS Delays for using with DDEX1DE.
d = [t - 1

t - 0.2];

The problem can also be solved with the syntax corresponding to
constant delays

delays = [1, 0.2];

2-802

ddesd

sol = ddesd(@ddex1de,delays,@ddex1hist,[0, 5]);

or using dde23:

sol = dde23(@ddex1de,delays,@ddex1hist,[0, 5]);

For more examples of solving delay differential equations see ddex2
and ddex3.

See Also dde23, ddeget, ddeset, deval, function_handle (@)

References [1] Shampine, L.F., “Solving ODEs and DDEs with Residual Control,”
Applied Numerical Mathematics, Vol. 52, 2005, pp. 113-127.

2-803

ddeset

Purpose Create or alter delay differential equations options structure

Syntax options = ddeset('name1',value1,'name2',value2,...)
options = ddeset(oldopts,'name1',value1,...)
options = ddeset(oldopts,newopts)
ddeset

Description options = ddeset('name1',value1,'name2',value2,...) creates
an integrator options structure options in which the named properties
have the specified values. Any unspecified properties have default
values. It is sufficient to type only the leading characters that uniquely
identify the property. ddeset ignores case for property names.

options = ddeset(oldopts,'name1',value1,...) alters an existing
options structure oldopts. This overwrites any values in oldopts that
are specified using name/value pairs and returns the modified structure
as the output argument.

options = ddeset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any values
set in newopts overwrite the corresponding values in oldopts.

ddeset with no input arguments displays all property names and their
possible values, indicating defaults with braces {}.

You can use the function ddeget to query the options structure for the
value of a specific property.

DDE
Properties

The following sections describe the properties that you can set using
ddeset. There are several categories of properties:

• Error control

• Solver output

• Step size

• Event location

• Discontinuities

2-804

ddeset

Error Control Properties

At each step, solvers dde23 and ddesd estimate an error e. dde23
estimates the local truncation error, and ddesd estimates the residual.
In either case, this error must be less than or equal to the acceptable
error, which is a function of the specified relative tolerance, RelTol, and
the specified absolute tolerance, AbsTol.

|e(i)| ≤ max(RelTol*abs(y(i)),AbsTol(i))

For routine problems, dde23 and ddesd deliver accuracy roughly
equivalent to the accuracy you request. They deliver less accuracy
for problems integrated over “long” intervals and problems that are
moderately unstable. Difficult problems may require tighter tolerances
than the default values. For relative accuracy, adjust RelTol. For the
absolute error tolerance, the scaling of the solution components is
important: if |y| is somewhat smaller than AbsTol, the solver is not
constrained to obtain any correct digits in y. You might have to solve a
problem more than once to discover the scale of solution components.

Roughly speaking, this means that you want RelTol correct digits in all
solution components except those smaller than thresholds AbsTol(i).
Even if you are not interested in a component y(i) when it is small,
you may have to specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more interesting
components

The following table describes the error control properties.

2-805

ddeset

DDE Error Control Properties

Property Value Description

RelTol Positive
scalar {1e-3}

A relative error tolerance that applies to all components
of the solution vector y. It is a measure of the error
relative to the size of each solution component. Roughly,
it controls the number of correct digits in all solution
components except those smaller than thresholds
AbsTol(i). The default, 1e-3, corresponds to 0.1%
accuracy.

The estimated error in each integration step satisfies
|e(i)|max(RelTol*abs(y(i)), AbsTol(i)).

AbsTol Positive
scalar or
vector {1e-6}

Absolute error tolerances that apply to the individual
components of the solution vector. AbsTol(i) is a
threshold below which the value of the ith solution
component is unimportant. The absolute error
tolerances determine the accuracy when the solution
approaches zero. Even if you are not interested in a
component y(i) when it is small, you may have to
specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more
interesting components.

If AbsTol is a vector, the length of AbsTol must be the
same as the length of the solution vector y. If AbsTol is
a scalar, the value applies to all components of y.

NormControl on | {off} Control error relative to norm of solution. Set
this property on to request that the solvers control
the error in each integration step with norm(e)<=
max(RelTol*norm(y),AbsTol). By default, solvers
dde23 and ddesd use a more stringent component-wise
error control.

2-806

ddeset

Solver Output Properties

You can use the solver output properties to control the output that the
solvers generate.

DDE Solver Output Properties

Property Value Description

OutputFcn Function
handle
{@odeplot}

The output function is a function that the solver calls
after every successful integration step. To specify
an output function, set 'OutputFcn' to a function
handle. For example,

options = ddeset('OutputFcn',...
@myfun)

sets ’OutputFcn’ to @myfun, a handle to the function
myfun. See “Function Handles” in the MATLAB
Programming documentation for more information.

The output function must be of the form

status = myfun(t,y,flag)

“Parameterizing Functions Called by Function
Functions” in the MATLAB Mathematics
documentation, explains how to provide additional
parameters to myfun, if necessary.

The solver calls the specified output function with
the following flags. Note that the syntax of the call
differs with the flag. The function must respond
appropriately:

2-807

ddeset

Property Value Description

• init — The solver calls myfun(tspan,y0,'init')
before beginning the integration to allow the output
function to initialize. tspan is the input argument
to solvers dde23 and ddesd. y0 is the initial value of
the solution, either from history(t0) or specified
in the initialY option.

• {none} — The solver calls status = myfun(t,y)
after each integration step on which output is
requested. t contains points where output was
generated during the step, and y is the numerical
solution at the points in t. If t is a vector, the ith
column of y corresponds to the ith element of t.

myfun must return a status output value of 0 or 1.
If literal > status, the solver halts integration. You
can use this mechanism, for instance, to implement
a Stop button.

• done — The solver calls myfun([],[],'done')
when integration is complete to allow the output
function to perform any cleanup chores.

You can use these general purpose output functions
or you can edit them to create your own. Type
help functionname at the command line for more
information.

• odeplot – time series plotting (default when you
call the solver with no output argument and you
have not specified an output function)

• odephas2 – two-dimensional phase plane plotting

• odephas3 – three-dimensional phase plane plotting

• odeprint – print solution as the solver computes it

2-808

ddeset

Property Value Description

OutputSel Vector of
indices

Vector of indices specifying which components of the
solution vector the dde23 or ddesd solver passes to
the output function. For example, if you want to use
the odeplot output function, but you want to plot
only the first and third components of the solution,
you can do this using

options = ddeset...
('OutputFcn',@odeplot,...
'OutputSel',[1 3]);

By default, the solver passes all components of the
solution to the output function.

Stats on | {off} Specifies whether the solver should display statistics
about its computations. By default, Stats is off. If it
is on, after solving the problem the solver displays:

• The number of successful steps

• The number of failed attempts

• The number of times the DDE function was called

Step Size Properties

The step size properties let you specify the size of the first step the
solver tries, potentially helping it to better recognize the scale of the
problem. In addition, you can specify bounds on the sizes of subsequent
time steps.

The following table describes the step size properties.

2-809

ddeset

DDE Step Size Properties

Property Value Description

InitialStep Positive scalar Suggested initial step size. InitialStep sets an
upper bound on the magnitude of the first step size
the solver tries. If you do not set InitialStep, the
solver bases the initial step size on the slope of the
solution at the initial time tspan(1). The initial step
size is limited by the shortest delay. If the slope of
all solution components is zero, the procedure might
try a step size that is much too large. If you know
this is happening or you want to be sure that the
solver resolves important behavior at the start of the
integration, help the code start by providing a suitable
InitialStep.

2-810

ddeset

Property Value Description

Upper bound on solver step size. If the differential
equation has periodic coefficients or solutions, it may
be a good idea to set MaxStep to some fraction (such
as 1/4) of the period. This guarantees that the solver
does not enlarge the time step too much and step over
a period of interest. Do not reduce MaxStep:

• When the solution does not appear to be accurate
enough. Instead, reduce the relative error tolerance
RelTol, and use the solution you just computed
to determine appropriate values for the absolute
error tolerance vector AbsTol. (See “Error Control
Properties” on page 2-805 for a description of the
error tolerance properties.)

MaxStep Positive scalar
{0.1*
abs(t0-tf)}

• To make sure that the solver doesn’t step over
some behavior that occurs only once during the
simulation interval. If you know the time at which
the change occurs, break the simulation interval
into two pieces and call the solver (dde23 or ddesd)
twice. If you do not know the time at which the
change occurs, try reducing the error tolerances
RelTol and AbsTol. Use MaxStep as a last resort.

Event Location Property

In some DDE problems, the times of specific events are important.
While solving a problem, the dde23 and ddesd solvers can detect such
events by locating transitions to, from, or through zeros of user-defined
functions.

The following table describes the Events property.

2-811

ddeset

DDE Events Property

String Value Description

Events Function
handle

Handle to a function that includes one or more event
functions. See “Function Handles” in the MATLAB
Programming documentation for more information. The
function is of the form

[value,isterminal,direction] =
events(t,y,Z)

value, isterminal, and direction are vectors for which
the ith element corresponds to the ith event function:

2-812

ddeset

String Value Description

• value(i) is the value of the ith event function.

• isterminal(i) = 1 if you want the integration to
terminate at a zero of this event function, and 0
otherwise.

• direction(i) = 0 if you want the solver (dde23 or
ddesd) to locate all zeros (the default), +1 if only zeros
where the event function is increasing, and -1 if only
zeros where the event function is decreasing.

If you specify an events function and events are
detected, the solver returns three additional fields in
the solution structure sol:

• sol.xe is a row vector of times at which events occur.

• sol.ye is a matrix whose columns are the solution
values corresponding to times in sol.xe.

• sol.ie is a vector containing indices that specify which
event occurred at the corresponding time in sol.xe.

For examples that use an event function while solving
ordinary differential equation problems, see “Example:
Simple Event Location” (ballode) and “Example:
Advanced Event Location” (orbitode), in the MATLAB
Mathematics documentation.

Discontinuity Properties

Solvers dde23 and ddesd can solve problems with discontinuities in the
history or in the coefficients of the equations. The following properties
enable you to provide these solvers with a different initial value, and,
for dde23, locations of known discontinuities. See “Discontinuities” in
the MATLAB Mathematics documentation for more information.

The following table describes the discontinuity properties.

2-813

ddeset

DDE Discontinuity Properties

String Value Description

Jumps Vector Location of discontinuities. Points where
the history or solution may have a jump
discontinuity in a low-order derivative. This
applies only to the dde23 solver.

InitialY Vector Initial value of solution. By default the initial
value of the solution is the value returned by
history at the initial point. Supply a different
initial value as the value of the InitialY
property.

Example To create an options structure that changes the relative error tolerance
of the solver from the default value of 1e-3 to 1e-4, enter

options = ddeset('RelTol', 1e-4);

To recover the value of 'RelTol' from options, enter

ddeget(options, 'RelTol')

ans =

1.0000e-004

See Also dde23, ddesd, ddeget, function_handle (@)

2-814

ddeterm

Purpose Terminate Dynamic Data Exchange (DDE) conversation

Syntax rc = ddeterm(channel)

Description rc = ddeterm(channel) accepts a channel handle returned by a
previous call to ddeinit that established the DDE conversation.
ddeterm terminates this conversation. rc is a return code where 0
indicates failure and 1 indicates success.

Examples To close a conversation channel previously opened with ddeinit:

rc = ddeterm(channel)

rc =
1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeunadv

2-815

ddeunadv

Purpose Release advisory link

Syntax

Description ddeunadv releases the advisory link between MATLAB and the server
application established by an earlier ddeadv call. The channel, item,
and format must be the same as those specified in the call to ddeadv
that initiated the link. If you include the timeout argument but accept
the default format, you must specify format as an empty matrix.

If successful, ddeunadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item name for the
advisory link. Changing the data identified by
item at the server triggers the advisory link.

format (optional) Two-element array. This must be the same as
the format argument for the corresponding
ddeadv call.

timeout (optional) Scalar specifying the time-out limit for this
operation. timeout is specified in milliseconds.
(1000 milliseconds = 1 second). The default value
of timeout is three seconds.

Example To release an advisory link established previously with ddeadv:

rc = ddeunadv(channel, 'r1c1:r5c5')
rc =

1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeterm

2-816

deal

Purpose Distribute inputs to outputs

Note As of MATLAB Version 7.0, you can access the contents of
cell arrays and structure fields without using the deal function. See
Example 3, below.

Syntax [Y1, Y2, Y3, ...] = deal(X)
[Y1, Y2, Y3, ...] = deal(X1, X2, X3, ...)
[S.field] = deal(X)
[X{:}] = deal(A.field)
[Y1, Y2, Y3, ...] = deal(X{:})
[Y1, Y2, Y3, ...] = deal(S.field)

Description [Y1, Y2, Y3, ...] = deal(X) copies the single input to all the
requested outputs. It is the same as Y1 = X, Y2 = X, Y3 = X, ...

[Y1, Y2, Y3, ...] = deal(X1, X2, X3, ...) is the same as Y1 =
X1; Y2 = X2; Y3 = X3; ...

Remarks deal is most useful when used with cell arrays and structures via
comma-separated list expansion. Here are some useful constructions:

[S.field] = deal(X) sets all the fields with the name field in the
structure array S to the value X. If S doesn’t exist, use [S(1:m).field]
= deal(X).

[X{:}] = deal(A.field) copies the values of the field with
name field to the cell array X. If X doesn’t exist, use [X{1:m}] =
deal(A.field).

[Y1, Y2, Y3, ...] = deal(X{:}) copies the contents of the cell
array X to the separate variables Y1, Y2, Y3, ...

[Y1, Y2, Y3, ...] = deal(S.field) copies the contents of the
fields with the name field to separate variables Y1, Y2, Y3, ...

2-817

deal

Examples Example 1 — Assign Data From a Cell Array

Use deal to copy the contents of a 4-element cell array into four
separate output variables.

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})

a =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

b =
1
1
1

c =
1 0 0
0 1 0
0 0 1

d =
0
0
0

Example 2 — Assign Data From Structure Fields

Use deal to obtain the contents of all the name fields in a structure
array:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[name1,name2] = deal(A(:).name)

name1 =
Pat

2-818

deal

name2 =
Tony

Example 3 — Doing the Same Without deal

As of MATLAB Version 7.0, you can, in most cases, access the contents
of cell arrays and structure fields without using the deal function.
The two commands shown below perform the same operation as those
used in the previous two examples, except that these commands do
not require deal.

[a,b,c,d] = C{:}
[name1,name2] = A(:).name

See Also cell, iscell, celldisp, struct, isstruct, fieldnames, isfield,
orderfields, rmfield, cell2struct, struct2cell

2-819

deblank

Purpose Strip trailing blanks from end of string

Syntax str = deblank(str)
c = deblank(c)

Description str = deblank(str) removes all trailing whitespace and null
characters from the end of character string str. A whitespace is any
character for which the isspace function returns logical 1 (true).

c = deblank(c) when c is a cell array of strings, applies deblank to
each element of c.

The deblank function is useful for cleaning up the rows of a character
array.

Examples Example 1 – Removing Trailing Blanks From a String

Compose a string str that contains space, tab, and null characters:

NL = char(0); TAB = char(9);
str = [NL 32 TAB NL 'AB' 32 NL 'CD' NL 32 TAB NL 32];

Display all characters of the string between | symbols:

['|' str '|']
ans =

| AB CD |

Remove trailing whitespace and null characters, and redisplay the
string:

newstr = deblank(str);

['|' newstr '|']
ans =

| AB CD|

2-820

deblank

Example 2– Removing Trailing Blanks From a Cell Array of
Strings

A{1,1} = 'MATLAB ';
A{1,2} = 'SIMULINK ';
A{2,1} = 'Toolboxes ';
A{2,2} = 'The MathWorks ';
A =

'MATLAB ' 'SIMULINK '
'Toolboxes ' 'The MathWorks '

deblank(A)
ans =

'MATLAB' 'SIMULINK'
'Toolboxes' 'The MathWorks'

See Also strjust, strtrim

2-821

debug

Purpose List M-file debugging functions

GUI
Alternatives

Use the Debug menu in most desktop tools, or use the Editor/Debugger.

Syntax debug

Description debug lists M-file debugging functions.

Use debugging functions (listed in the See Also section) to help you
identify problems in your M-files. Set breakpoints using dbstop.
When MATLAB encounters a breakpoint during execution, it enters
debug mode, the Editor/Debugger becomes active, and the prompt in
the Command Window changes to a K>>. Any MATLAB command is
allowed at the prompt. To resume execution, use dbcont or dbstep. To
exit from debug mode, use dbquit.

To open the M-File in the Editor/Debugger when execution reaches a
breakpoint, select Debug > Open M-Files When Debugging.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbtype, dbup, evalin, whos

“Finding Errors, Debugging, and Correcting M-Files” in the MATLAB
Desktop Tools and Development Environment documentation

2-822

dec2base

Purpose Convert decimal to base N number in string

Syntax str = dec2base(d, base)
str = dec2base(d, base, n)

Description str = dec2base(d, base) converts the nonnegative integer d to the
specified base. d must be a nonnegative integer smaller than 2^52, and
base must be an integer between 2 and 36. The returned argument
str is a string.

str = dec2base(d, base, n) produces a representation with at least
n digits.

Examples The expression dec2base(23, 2) converts 2310 to base 2, returning
the string '10111'.

See Also base2dec

2-823

dec2bin

Purpose Convert decimal to binary number in string

Syntax str = dec2bin(d)
str = dec2bin(d,n)

Description returns the

str = dec2bin(d) binary representation of d as a string. d must be a
nonnegative integer smaller than 2^52.

str = dec2bin(d,n) produces a binary representation with at least n
bits.

Examples Decimal 23 converts to binary 010111:

dec2bin(23)
ans =

10111

See Also bin2dec, dec2hex

2-824

dec2hex

Purpose Convert decimal to hexadecimal number in string

Syntax str = dec2hex(d)
str = dec2hex(d, n)

Description str = dec2hex(d) converts the decimal integer d to its hexadecimal
representation stored in a MATLAB string. d must be a nonnegative
integer smaller than 2^52.

str = dec2hex(d, n) produces a hexadecimal representation with
at least n digits.

Examples To convert decimal 1023 to hexadecimal,

dec2hex(1023)

ans =
3FF

See Also dec2bin, format, hex2dec, hex2num

2-825

decic

Purpose Compute consistent initial conditions for ode15i

Syntax [y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0)
[y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,

options)
[y0mod,yp0mod,resnrm] = decic(odefun,t0,y0,fixed_y0,yp0,

fixed_yp0...)

Description [y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0)
uses the inputs y0 and yp0 as initial guesses for an iteration to find
output values that satisfy the requirement ,
i.e., y0mod and yp0mod are consistent initial conditions. odefun is a
function handle. See “Function Handles” in the MATLAB Programming
documentation for more information. The function decic changes
as few components of the guesses as possible. You can specify that
decic holds certain components fixed by setting fixed_y0(i) = 1 if
no change is permitted in the guess for y0(i) and 0 otherwise. decic
interprets fixed_y0 = [] as allowing changes in all entries. fixed_yp0
is handled similarly.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function odefun, if necessary.

You cannot fix more than length(y0) components. Depending on the
problem, it may not be possible to fix this many. It also may not be
possible to fix certain components of y0 or yp0. It is recommended that
you fix no more components than necessary.

[y0mod,yp0mod] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,options) computes
as above with default tolerances for consistent initial conditions,
AbsTol and RelTol, replaced by the values in options, a structure
you create with the odeset function.

[y0mod,yp0mod,resnrm] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0...) returns the

2-826

decic

norm of odefun(t0,y0mod,yp0mod) as resnrm. If the norm seems
unduly large, use options to decrease RelTol (1e-3 by default).

Examples These demos provide examples of the use of decic in solving implicit
ODEs: ihb1dae, iburgersode.

See Also ode15i, odeget, odeset, function_handle (@)

2-827

deconv

Purpose Deconvolution and polynomial division

Syntax [q,r] = deconv(v,u)

Description [q,r] = deconv(v,u) deconvolves vector u out of vector v, using long
division. The quotient is returned in vector q and the remainder in
vector r such that v = conv(u,q)+r .

If u and v are vectors of polynomial coefficients, convolving them is
equivalent to multiplying the two polynomials, and deconvolution is
polynomial division. The result of dividing v by u is quotient q and
remainder r.

Examples If

u = [1 2 3 4]
v = [10 20 30]

the convolution is

c = conv(u,v)
c =

10 40 100 160 170 120

Use deconvolution to recover u:

[q,r] = deconv(c,u)
q =

10 20 30
r =

0 0 0 0 0 0

This gives a quotient equal to v and a zero remainder.

Algorithm deconv uses the filter primitive.

See Also conv, residue

2-828

del2

Purpose Discrete Laplacian

Syntax L = del2(U)
-L = del2(U)
L = del2(U,h)
L = del2(U,hx,hy)
L = del2(U,hx,hy,hz,...)

Definition If the matrix U is regarded as a function evaluated at the point
on a square grid, then 4*del2(U) is a finite difference approximation of
Laplace’s differential operator applied to , that is:

where:

in the interior. On the edges, the same formula is applied to a cubic
extrapolation.

For functions of more variables , del2(U) is an
approximation,

where is the number of variables in .

Description L = del2(U) where U is a rectangular array is a discrete approximation
of

2-829

del2

The matrix L is the same size as U with each element equal to the
difference between an element of U and the average of its four neighbors.

-L = del2(U) when U is an multidimensional array, returns an
approximation of

where is ndims(u).

L = del2(U,h) where H is a scalar uses H as the spacing between points
in each direction (h=1 by default).

L = del2(U,hx,hy) when U is a rectangular array, uses the spacing
specified by hx and hy. If hx is a scalar, it gives the spacing between
points in the x-direction. If hx is a vector, it must be of length size(u,2)
and specifies the x-coordinates of the points. Similarly, if hy is a scalar,
it gives the spacing between points in the y-direction. If hy is a vector,
it must be of length size(u,1) and specifies the y-coordinates of the
points.

L = del2(U,hx,hy,hz,...) where U is multidimensional uses the
spacing given by hx, hy, hz, ...

Remarks MATLAB computes the boundaries of the grid by extrapolating the
second differences from the interior. The algorithm used for this
computation can be seen in the del2 M-file code. To view this code, type

type del2

Examples The function

2-830

del2

has

For this function, 4*del2(U) is also 4.

[x,y] = meshgrid(-4:4,-3:3);
U = x.*x+y.*y
U =

25 18 13 10 9 10 13 18 25
20 13 8 5 4 5 8 13 20
17 10 5 2 1 2 5 10 17
16 9 4 1 0 1 4 9 16
17 10 5 2 1 2 5 10 17
20 13 8 5 4 5 8 13 20
25 18 13 10 9 10 13 18 25

V = 4*del2(U)
V =

4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4

See Also diff, gradient

2-831

delaunay

Purpose Delaunay triangulation

Syntax TRI = delaunay(x,y)
TRI = delaunay(x,y,options)

Definition Given a set of data points, the Delaunay triangulation is a set of
lines connecting each point to its natural neighbors. The Delaunay
triangulation is related to the Voronoi diagram — the circle
circumscribed about a Delaunay triangle has its center at the vertex of
a Voronoi polygon.

Description TRI = delaunay(x,y) for the data points defined by vectors x and
y, returns a set of triangles such that no data points are contained
in any triangle’s circumscribed circle. Each row of the m-by-3 matrix
TRI defines one such triangle and contains indices into x and y. If the
original data points are collinear or x is empty, the triangles cannot be
computed and delaunay returns an empty matrix.

delaunay uses Qhull.

TRI = delaunay(x,y,options) specifies a cell array of strings
options to be used in Qhull via delaunayn. The default options are
{'Qt','Qbb','Qc'}.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default. For more information on Qhull
and its options, see http://www.qhull.org.

2-832

http://www.qhull.org

delaunay

Remarks The Delaunay triangulation is used by: griddata (to interpolate
scattered data), voronoi (to compute the voronoi diagram), and is
useful by itself to create a triangular grid for scattered data points.

The functions dsearch and tsearch search the triangulation to find
nearest neighbor points or enclosing triangles, respectively.

Visualization Use one of these functions to plot the output of delaunay:

triplot Displays the triangles defined in the m-by-3 matrix
TRI. See Example 1.

trisurf Displays each triangle defined in the m-by-3 matrix
TRI as a surface in 3-D space. To see a 2-D surface,
you can supply a vector of some constant value for the
third dimension. For example

trisurf(TRI,x,y,zeros(size(x)))

See Example 2.

trimesh Displays each triangle defined in the m-by-3 matrix
TRI as a mesh in 3-D space. To see a 2-D surface, you
can supply a vector of some constant value for the
third dimension. For example,

trimesh(TRI,x,y,zeros(size(x)))

produces almost the same result as triplot, except
in 3-D space. See Example 2.

Examples Example 1

Plot the Delaunay triangulation for 10 randomly generated points.

rand('state',0);
x = rand(1,10);
y = rand(1,10);

2-833

delaunay

TRI = delaunay(x,y);
subplot(1,2,1),...
triplot(TRI,x,y)
axis([0 1 0 1]);
hold on;
plot(x,y,'or');
hold off

Compare the Voronoi diagram of the same points:

[vx, vy] = voronoi(x,y,TRI);
subplot(1,2,2),...
plot(x,y,'r+',vx,vy,'b-'),...
axis([0 1 0 1])

Example 2

Create a 2-D grid then use trisurf to plot its Delaunay triangulation
in 3-D space by using 0s for the third dimension.

[x,y] = meshgrid(1:15,1:15);

2-834

delaunay

tri = delaunay(x,y);
trisurf(tri,x,y,zeros(size(x)))

Next, generate peaks data as a 15-by-15 matrix, and use that data with
the Delaunay triangulation to produce a surface in 3-D space.

z = peaks(15);
trisurf(tri,x,y,z)

2-835

delaunay

You can use the same data with trimesh to produce a mesh in 3-D space.

trimesh(tri,x,y,z)

2-836

delaunay

Example 3

The following example illustrates the options input for delaunay.

x = [-0.5 -0.5 0.5 0.5];
y = [-0.5 0.5 0.5 -0.5];

The command

T = delaunay(X);

returns the following error message.

??? qhull input error: can not scale last coordinate. Input is
cocircular

or cospherical. Use option 'Qz' to add a point at infinity.

The error message indicates that you should add 'Qz' to the default
Qhull options.

2-837

delaunay

tri = delaunay(x,y,{'Qt','Qbb','Qc','Qz'})

tri =

3 2 1
3 4 1

Algorithm delaunay is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also delaunay3, delaunay, dsearch, griddata, plot, triplot, trimesh,
trisurf, tsearch, voronoi

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-838

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

delaunay3

Purpose 3-D Delaunay tessellation

Syntax T = delaunay3(x,y,z)
T = delaunay3(x,y,z,options)

Description T = delaunay3(x,y,z) returns an array T, each row of which contains
the indices of the points in (x,y,z) that make up a tetrahedron in the
tessellation of (x,y,z). T is a numtes-by-4 array where numtes is the
number of facets in the tessellation. x, y, and z are vectors of equal
length. If the original data points are collinear or x, y, and z define an
insufficient number of points, the triangles cannot be computed and
delaunay3 returns an empty matrix.

delaunay3 uses Qhull.

T = delaunay3(x,y,z,options) specifies a cell array of strings
options to be used in Qhull via delaunay3. The default options are
{'Qt','Qbb','Qc'}.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default. For more information on Qhull
and its options, see http://www.qhull.org.

Visualization Use tetramesh to plot delaunay3 output. tetramesh displays the
tetrahedrons defined in T as mesh. tetramesh uses the default
transparency parameter value 'FaceAlpha' = 0.9.

Examples Example 1

This example generates a 3-dimensional Delaunay tessellation, then
uses tetramesh to plot the tetrahedrons that form the corresponding
simplex. camorbit rotates the camera position to provide a meaningful
view of the figure.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];

2-839

http://www.qhull.org

delaunay3

% [x,y,z] are corners of a cube plus the center.
Tes = delaunay3(x,y,z)

Tes =

9 1 5 6
3 9 1 5
2 9 1 6
2 3 9 4
2 3 9 1
7 9 5 6
7 3 9 5
8 7 9 6
8 2 9 6
8 2 9 4
8 3 9 4
8 7 3 9

X = [x(:) y(:) z(:)];
tetramesh(Tes,X);camorbit(20,0)

2-840

delaunay3

Example 2

The following example illustrates the options input for delaunay3.

X = [-0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 0.5];
Y = [-0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5];
Z = [-0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5];

The command

T = delaunay3(X);

returns the following error message.

??? qhull input error: can not scale last coordinate. Input is
cocircular

2-841

delaunay3

or cospherical. Use option 'Qz' to add a point at infinity.

The error message indicates that you should add 'Qz' to the default
Qhull options.

T = delaunay3(X, Y, Z, {'Qt', 'Qbb', 'Qc', 'Qz'})

T =

4 3 5 1
4 2 5 1
4 7 3 5
4 7 8 5
4 6 2 5
4 6 8 5

Algorithm delaunay3 is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also delaunay, delaunayn

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-842

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

delaunayn

Purpose N-D Delaunay tessellation

Syntax T = delaunayn(X)
T = delaunayn(X, options)

Description T = delaunayn(X) computes a set of simplices such that no data
points of X are contained in any circumspheres of the simplices. The
set of simplices forms the Delaunay tessellation. X is an m-by-n array
representing m points in n-dimensional space. T is a numt-by-(n+1)
array where each row contains the indices into X of the vertices of the
corresponding simplex.

delaunayn uses Qhull.

T = delaunayn(X, options) specifies a cell array of strings options
to be used as options in Qhull. The default options are:

• {'Qt','Qbb','Qc'} for 2- and 3-dimensional input

• {'Qt','Qbb','Qc','Qx'} for 4 and higher-dimensional input

If options is [], the default options used. If options is {''}, no options
are used, not even the default. For more information on Qhull and its
options, see http://www.qhull.org.

Visualization Plotting the output of delaunayn depends of the value of n:

• For n = 2, use triplot, trisurf, or trimesh as you would for
delaunay.

• For n = 3, use tetramesh as you would for delaunay3.

For more control over the color of the facets, use patch to plot
the output. For an example, see “Tessellation and Interpolation
of Scattered Data in Higher Dimensions” in the MATLAB
documentation.

• You cannot plot delaunayn output for n > 3.

2-843

http://www.qhull.org

delaunayn

Examples Example 1

This example generates an n-dimensional Delaunay tessellation, where
n = 3.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
X = [x(:) y(:) z(:)];
Tes = delaunayn(X)

Tes =
9 1 5 6
3 9 1 5
2 9 1 6
2 3 9 4
2 3 9 1
7 9 5 6
7 3 9 5
8 7 9 6
8 2 9 6
8 2 9 4
8 3 9 4
8 7 3 9

You can use tetramesh to visualize the tetrahedrons that form the
corresponding simplex. camorbit rotates the camera position to provide
a meaningful view of the figure.

tetramesh(Tes,X);camorbit(20,0)

2-844

delaunayn

Example 2

The following example illustrates the options input for delaunayn.

X = [-0.5 -0.5 -0.5;...
-0.5 -0.5 0.5;...
-0.5 0.5 -0.5;...
-0.5 0.5 0.5;...
0.5 -0.5 -0.5;...
0.5 -0.5 0.5;...
0.5 0.5 -0.5;...
0.5 0.5 0.5];

The command

T = delaunayn(X);

2-845

delaunayn

returns the following error message.

??? qhull input error: can not scale last coordinate. Input is cocircular
or cospherical. Use option ’Qz’ to add a point at infinity.

This suggests that you add 'Qz' to the default options.

T = delaunayn(X,{'Qt','Qbb','Qc','Qz'});

To visualize this answer you can use the tetramesh function:

tetramesh(T,X)

2-846

delaunayn

Algorithm delaunayn is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhulln, delaunayn, delaunay3, tetramesh, voronoin

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-847

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

delete

Purpose Remove files or graphics objects

Graphical
Interface

As an alternative to the delete function, you can delete files using the
“Current Directory Browser”, as described in the Desktop Tools and
Development Environment documentation.

Syntax delete filename
delete(h)
delete('filename')

Description delete filename deletes the named file from the disk. The filename
may include an absolute pathname or a pathname relative to the
current directory. The filename may also include wildcards, (*).

delete(h) deletes the graphics object with handle h. The function
deletes the object without requesting verification even if the object is a
window.

delete('filename') is the function form of delete. Use this form
when the filename is stored in a string.

Note MATLAB does not ask for confirmation when you enter the
delete command. To avoid accidentally losing files or graphics objects
that you need, make sure that you have accurately specified the items
you want deleted.

Remarks The action that the delete function takes on deleted files depends upon
the setting of the MATLAB recycle state. If you set the recycle state
to on, MATLAB moves deleted files to your recycle bin or temporary
directory. With the recycle state set to off (the default), deleted files
are permanently removed from the system.

To set the recycle state for all MATLAB sessions, use the Preferences
dialog box. Open the Preferences dialog and select General. To
enable or disable recycling, click Move files to the recycle bin or
Delete files permanently. See “General Preferences for MATLAB”

2-848

delete

in the Desktop Tools and Development Environment documentation
for more information.

The delete function deletes files and handles to graphics objects only.
Use the rmdir function to delete directories.

Examples To delete all files with a .mat extension in the ../mytests/ directory,
type

delete('../mytests/*.mat')

To delete a directory, use rmdir rather than delete:

rmdir mydirectory

See Also recycle, dir, edit, fileparts, mkdir, rmdir, type

2-849

delete (COM)

Purpose Remove COM control or server

Syntax h.delete
delete(h)

Description h.delete releases all interfaces derived from the specified COM server
or control, and then deletes the server or control itself. This is different
from releasing an interface, which releases and invalidates only that
interface.

delete(h) is an alternate syntax for the same operation.

Examples Create a Microsoft Calender application. Then create a TitleFont
interface and use it to change the appearance of the font of the
calendar’s title:

f = figure('position',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 0 500 500], f);

TFont = cal.TitleFont
TFont =

Interface.Standard_OLE_Types.Font

TFont.Name = 'Viva BoldExtraExtended';
TFont.Bold = 0;

When you’re finished working with the title font, release the TitleFont
interface:

TFont.release;

Now create a GridFont interface and use it to modify the size of the
calendar’s date numerals:

GFont = cal.GridFont
GFont =

Interface.Standard_OLE_Types.Font

2-850

delete (COM)

GFont.Size = 16;

When you’re done, delete the cal object and the figure window. Deleting
the cal object also releases all interfaces to the object (e.g., GFont):

cal.delete;
delete(f);
clear f;

Note that, although the object and interfaces themselves have been
destroyed, the variables assigned to them still reside in the MATLAB
workspace until you remove them with clear:

whos
Name Size Bytes Class

GFont 1x1 0 handle
TFone 1x1 0 handle
cal 1x1 0 handle

Grand total is 3 elements using 0 bytes

See Also release, save, load, actxcontrol, actxserver

2-851

delete (ftp)

Purpose Remove file on FTP server

Syntax delete(f,'filename')

Description delete(f,'filename') removes the file filename from the current
directory of the FTP server f, where f was created using ftp.

Examples Connect to server testsite.

test=ftp('ftp.testsite.com')

Change the current directory to testdir and view the contents.

cd(test,'testdir');
dir(test)

See Also ftp

2-852

delete (serial)

Purpose Remove serial port object from memory

Syntax delete(obj)

Arguments obj A serial port object or an array of serial port objects.

Description delete(obj) removes obj from memory.

Remarks When you delete obj, it becomes an invalid object. Because you cannot
connect an invalid serial port object to the device, you should remove it
from the workspace with the clear command. If multiple references
to obj exist in the workspace, then deleting one reference invalidates
the remaining references.

If obj is connected to the device, it has a Status property value of
open. If you issue delete while obj is connected, then the connection
is automatically broken. You can also disconnect obj from the device
with the fclose function.

If you use the help command to display help for delete, then you need
to supply the pathname shown below.

help serial/delete

Example This example creates the serial port object s, connects s to the device,
writes and reads text data, disconnects s from the device, removes s
from memory using delete, and then removes s from the workspace
using clear.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)
delete(s)
clear s

2-853

delete (serial)

See Also Functions

clear, fclose, isvalid

Properties

Status

2-854

delete (timer)

Purpose Remove timer object from memory

Syntax delete(obj)

Description delete(obj) removes the timer object, obj, from memory. If obj is an
array of timer objects, delete removes all the objects from memory.

When you delete a timer object, it becomes invalid and cannot be
reused. Use the clear command to remove invalid timer objects from
the workspace.

If multiple references to a timer object exist in the workspace, deleting
the timer object invalidates the remaining references. Use the clear
command to remove the remaining references to the object from the
workspace.

See Also clear, isvalid(timer), timer

2-855

deleteproperty

Purpose Remove custom property from object

Syntax h.deleteproperty('propertyname')
deleteproperty(h, 'propertyname')

Description h.deleteproperty('propertyname') deletes the property specified in
the string propertyname from the custom properties belonging to object
or interface, h.

deleteproperty(h, 'propertyname') is an alternate syntax for the
same operation.

Note You can only delete properties that have been created with
addproperty.

Examples Create an mwsamp control and add a new property named Position to
it. Assign an array value to the property:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get

Label: 'Label'
Radius: 20

h.addproperty('Position');
h.Position = [200 120];
h.get

Label: 'Label'
Radius: 20

Position: [200 120]

Delete the custom Position property:

h.deleteproperty('Position');
h.get

Label: 'Label'

2-856

deleteproperty

Radius: 20

See Also addproperty, get, set, inspect

2-857

delevent

Purpose Remove tsdata.event objects from timeseries object

Syntax ts = delevent(ts,event)
ts = delevent(ts,events)
ts = delevent(ts,event,n)

Description ts = delevent(ts,event) removes the tsdata.event object from the
ts.events property, where event is an event name string.

ts = delevent(ts,events) removes the tsdata.event object from the
ts.events property, where events is a cell array of event name strings.

ts = delevent(ts,event,n) removes the nth tsdata.event object
from the ts.events property. event is the name of the tsdata.event
object.

Examples The following example shows how to remove an event from a
timeseries object:

1 Create a time series.

ts = timeseries(rand(5,4))

2 Create an event object called 'test' such that the event occurs at
time 3.

e = tsdata.event('test',3)

3 Add the event object to the time series ts.

ts = addevent(ts,e)

4 Remove the event object from the time series ts.

ts = delevent(ts,'test')

See Also addevent, timeseries, tsdata.event, tsprops

2-858

delsample

Purpose Remove sample from timeseries object

Syntax ts = delsample(ts,'Index',N)
ts = delsample(ts,'Value',Time)

Description ts = delsample(ts,'Index',N) deletes samples from the timeseries
object ts. N specifies the indices of the ts time vector that correspond to
the samples you want to delete.

ts = delsample(ts,'Value',Time) deletes samples from the
timeseries object ts. Time specifies the time values that correspond to
the samples you want to delete.

See Also addsample

2-859

delsamplefromcollection

Purpose Remove sample from tscollection object

Syntax tsc = delsamplefromcollection(tsc,'Index',N)
tsc = delsamplefromcollection(tsc,'Value',Time)

Description tsc = delsamplefromcollection(tsc,'Index',N) deletes samples
from the tscollection object tsc. N specifies the indices of the tsc time
vector that correspond to the samples you want to delete.

tsc = delsamplefromcollection(tsc,'Value',Time) deletes
samples from the tscollection object tsc. Time specifies the time
values that correspond to the samples you want to delete.

See Also addsampletocollection, tscollection

2-860

demo

Purpose Access product demos via Help browser

GUI
Alternatives

As an alternative to the demo function, you can select Help > Demos
from any desktop tool, or click the Demos tab when the Help browser
is open.

Syntax demo
demo subtopic
demo subtopic category
demo('subtopic', 'category')

Description demo opens the Demos pane in the Help browser. In the left pane,
expand the listing for a product area (for example, MATLAB). Within
that product area, expand the listing for a product or product category
(for example, MATLAB Graphics). Select a specific demo from the
list (for example, Square Wave from Sine Waves). In the right pane,
view instructions for using the demo. For more information, see the
topic “Demos in the Help Browser” in the MATLAB Desktop Tools and
Development Environment documentation. To run a demo from the
command line, type the demo name. To run an M-file demo, open it in
the Editor/Debugger and run it using Cell > Evaluate Current Cell
and Advance, or run echodemo followed by the demo name.

demo subtopic opens the Demos pane in the Help browser with the
specified subtopic expanded. Subtopics are matlab, toolbox, simulink,
and blockset.

demo subtopic category opens the Demos pane in the Help browser
to the specified product or category within the subtopic. The demo
function uses the full name displayed in the Demo pane for category.

demo('subtopic', 'category') is the function form of the syntax.
Use this form when category is more than one word.

2-861

demo

Examples Accessing Toolbox Demos

To find the demos relating to Communications Toolbox, type

2-862

demo

demo toolbox communications

The Help browser opens to the Demos pane with the Toolbox subtopic
expanded and with the Communications product highlighted and
expanded to show the available demos.

Accessing Simulink Demos

To access the demos within Simulink, type

demo simulink automotive

The Demos pane opens with the Simulink subtopic and Automotive
category expanded.

Function Form of demo

To access the Simulink Parameter Estimation demos, run

demo('simulink', 'simulink parameter estimation')

which displays

2-863

demo

2-864

demo

Running a Demo from the Command Line

Type

vibes

to run a visualization demonstration showing an animated L-shaped
membrane.

Running an M-File Demo from the Command Line

Type

quake

to run an earthquake data demo. Not much appears to happen because
quake is an M-file demo and executes from start to end without stopping.
Verify this by viewing the M-file, quake.m, for example, by typing

edit quake

The first line, that is, the H1 line for quake, is

%% Loma Prieta Earthquake

The %% indicates that quake is an M-file demo. To step through the
demo cell-by-cell, from the Editor/Debugger select Cell > Evaluate
Current Cell and Advance.

Alternatively, run

echodemo quake

and the earthquake demo runs step-by-step in the Command Window.

See Also echodemo, grabcode, help, helpbrowser, helpwin, lookfor

2-865

depdir

Purpose List dependent directories of M-file or P-file

Syntax list = depdir('file_name')
[list, prob_files, prob_sym,

prob_strings] = depdir('file_name')
[...] = depdir('file_name1', 'file_name2',...)

Description The depdir function lists the directories of all the functions that a
specified M-file or P-file needs to operate. This function is useful for
finding all the directories that need to be included with a run-time
application and for determining the run-time path.

list = depdir('file_name') creates a cell array of strings containing
the directories of all the M-files and P-files that file_name.m or
file_name.p uses. This includes the second-level files that are called
directly by file_name, as well as the third-level files that are called by
the second-level files, and so on.

[list, prob_files, prob_sym, prob_strings] =
depdir('file_name') creates three additional cell arrays
containing information about any problems with the depdir
search. prob_files contains filenames that depdir was unable to
parse. prob_sym contains symbols that depdir was unable to find.
prob_strings contains callback strings that depdir was unable to
parse.

[...] = depdir('file_name1', 'file_name2',...) performs the
same operation for multiple files. The dependent directories of all files
are listed together in the output cell arrays.

Example list = depdir('mesh')

See Also depfun

2-866

depfun

Purpose List dependencies of M-file or P-file

Syntax list = depfun('fun')
[list, builtins, classes] = depfun('fun')
[list, builtins, classes, prob_files, prob_sym, eval_strings,

... called_from, java_classes] = depfun('fun')
[...] = depfun('fun1', 'fun2',...)
[...] = depfun({'fun1', 'fun2', ...})
[...] = depfun('fig_file')
[...] = depfun(..., options)

Description The depfun function lists the paths of all files a specified M-file or P-file
needs to operate.

Note It cannot be guaranteed that depfun will find every dependent
file. Some dependent files can be hidden in callbacks, or can be
constructed dynamically for evaluation, for example. Also note that the
list of functions returned by depfun often includes extra files that would
never be called if the specified function were actually evaluated.

list = depfun('fun') creates a cell array of strings containing
the paths of all the files that function fun uses. This includes the
second-level files that are called directly by fun, and the third-level files
that are called by the second-level files, and so on.

Function fun must be on the MATLAB path, as determined by the
which function. If the MATLAB path contains any relative directories,
then files in those directories will also have a relative path.

Note If MATLAB returns a parse error for any of the input functions, or
if the prob_files output below is nonempty, then the rest of the output
of depfun might be incomplete. You should correct the problematic files
and invoke depfun again.

2-867

depfun

[list, builtins, classes] = depfun('fun') creates three cell
arrays containing information about dependent functions. list
contains the paths of all the files that function fun and its subordinates
use. builtins contains the built-in functions that fun and its
subordinates use. classes contains the MATLAB classes that fun and
its subordinates use.

[list, builtins, classes, prob_files, prob_sym,
eval_strings,... called_from, java_classes] =
depfun('fun') creates additional cell arrays or structure arrays
containing information about any problems with the depfun search
and about where the functions in list are invoked. The additional
outputs are

• prob_files — Indicates which files depfun was unable to parse,
find, or access. Parsing problems can arise from MATLAB syntax
errors. prob_files is a structure array having these fields:

- name (path to the file)

- listindex (index of the file in list)

- errmsg (problems encountered)

• unused — This is a placeholder for an output argument that is not
fully implemented at this time. MATLAB returns an empty structure
array for this output.

• called_from — Cell array of the same length as list that indicates
which functions call other functions. This cell array is arranged so
that the following statement returns all functions in function fun
that invoke the function list{i}:

list(called_from{i})

• java_classes — Cell array of Java class names used by fun and
its subordinate functions.

2-868

depfun

[...] = depfun('fun1', 'fun2',...) performs the same operation
for multiple functions. The dependent functions of all files are listed
together in the output arrays.

[...] = depfun({'fun1', 'fun2', ...}) performs the same
operation, but on a cell array of functions. The dependent functions of
all files are listed together in the output array.

[...] = depfun('fig_file') looks for dependent functions among
the callback strings of the GUI elements that are defined in the figure
file named fig_file.

[...] = depfun(..., options) modifies the depfun operation
according to the options specified (see table below).

Option Description

'-all' Computes all possible left-side arguments and
displays the results in the report(s). Only the
specified arguments are returned.

'-calltree' Returns a call list in place of a called_from
list. This is derived from the called_from list
as an extra step.

'-expand' Includes both indices and full paths in the call
or called_from list.

'-print', 'file' Prints a full report to file.

'-quiet' Displays only error and warning messages, and
not a summary report.

'-toponly' Examines only the files listed explicitly as input
arguments. It does not examine the files on
which they depend.

'-verbose' Outputs additional internal messages.

Examples list = depfun('mesh'); % Files mesh.m depends on
list = depfun('mesh','-toponly') % Files mesh.m depends on
directly

2-869

depfun

[list,builtins,classes] = depfun('gca');

See Also depdir

2-870

det

Purpose Matrix determinant

Syntax d = det(X)

Description d = det(X) returns the determinant of the square matrix X. If X
contains only integer entries, the result d is also an integer.

Remarks Using det(X) == 0 as a test for matrix singularity is appropriate
only for matrices of modest order with small integer entries. Testing
singularity using abs(det(X)) <= tolerance is not recommended as
it is difficult to choose the correct tolerance. The function cond(X) can
check for singular and nearly singular matrices.

Algorithm The determinant is computed from the triangular factors obtained by
Gaussian elimination

[L,U] = lu(A)
s = det(L) % This is always +1 or -1
det(A) = s*prod(diag(U))

Examples The statement A = [1 2 3; 4 5 6; 7 8 9]

produces

A =
1 2 3
4 5 6
7 8 9

This happens to be a singular matrix, so d = det(A) produces d = 0.
Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix.
Now d = det(A) produces d = 27.

See Also cond, condest, inv, lu, rref

The arithmetic operators \, /

2-871

detrend

Purpose Remove linear trends

Syntax y = detrend(x)
y = detrend(x,'constant')
y = detrend(x,'linear',bp)

Description detrend removes the mean value or linear trend from a vector or
matrix, usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and
returns it in y. If x is a matrix, detrend removes the trend from each
column.

y = detrend(x,'constant') removes the mean value from vector x or,
if x is a matrix, from each column of the matrix.

y = detrend(x,'linear',bp) removes a continuous, piecewise linear
trend from vector x or, if x is a matrix, from each column of the matrix.
Vector bp contains the indices of the breakpoints between adjacent
linear segments. The breakpoint between two segments is defined as
the data point that the two segments share.

detrend(x,'linear'), with no breakpoint vector specified, is the same
as detrend(x).

Example sig = [0 1 -2 1 0 1 -2 1 0]; % signal with no linear trend
trend = [0 1 2 3 4 3 2 1 0]; % two-segment linear trend

2-872

detrend

x = sig+trend; % signal with added trend
y = detrend(x,'linear',5) % breakpoint at 5th element

y =

-0.0000
1.0000

-2.0000
1.0000
0.0000
1.0000

-2.0000
1.0000

-0.0000

Note that the breakpoint is specified to be the fifth element, which is
the data point shared by the two segments.

Algorithm detrend computes the least-squares fit of a straight line (or composite
line for piecewise linear trends) to the data and subtracts the resulting
function from the data. To obtain the equation of the straight-line fit,
use polyfit.

See Also polyfit

2-873

detrend (timeseries)

Purpose Subtract mean or best-fit line and all NaNs from time series

Syntax ts = detrend(ts1,method)
ts = detrend(ts1,Method,Index)

Description ts = detrend(ts1,method) subtracts either a mean or a best-fit line
from time-series data, usually for FFT processing. Method is a string
that specifies the detrend method and has two possible values:

• 'constant' — Subtracts the mean

• 'linear' — Subtracts the best-fit line

ts = detrend(ts1,Method,Index) uses the optional Index
integer array to specify the columns or rows to detrend. When
ts.IsTimeFirst is true, Index specifies one or more data columns.
When ts.IsTimeFirst is false, Index specifies one or more data rows.

Remarks You cannot apply detrend to time-series data with more than two
dimensions.

2-874

deval

Purpose Evaluate solution of differential equation problem

Syntax sxint = deval(sol,xint)
sxint = deval(xint,sol)
sxint = deval(sol,xint,idx)
sxint = deval(xint,sol,idx)
[sxint, spxint] = deval(...)

Description sxint = deval(sol,xint) and sxint = deval(xint,sol) evaluate
the solution of a differential equation problem. sol is a structure
returned by one of these solvers:

• An initial value problem solver (ode45, ode23, ode113, ode15s,
ode23s, ode23t, ode23tb, ode15i)

• A delay differential equations solver (dde23 or ddesd),

• The boundary value problem solver (bvp4c).

xint is a point or a vector of points at which you want the solution. The
elements of xint must be in the interval [sol.x(1),sol.x(end)]. For
each i, sxint(:,i) is the solution at xint(i).

sxint = deval(sol,xint,idx) and sxint = deval(xint,sol,idx)
evaluate as above but return only the solution components with indices
listed in the vector idx.

[sxint, spxint] = deval(...) also returns spxint, the value of the
first derivative of the polynomial interpolating the solution.

Note For multipoint boundary value problems, the solution obtained by
bvp4c might be discontinuous at the interfaces. For an interface point
xc, deval returns the average of the limits from the left and right of xc.
To get the limit values, set the xint argument of deval to be slightly
smaller or slightly larger than xc.

2-875

deval

Example This example solves the system using ode45, and
evaluates and plots the first component of the solution at 100 points in
the interval [0,20].

sol = ode45(@vdp1,[0 20],[2 0]);
x = linspace(0,20,100);
y = deval(sol,x,1);
plot(x,y);

See Also ODE solvers: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb,
ode15i

DDE solvers: dde23, ddesd

BVP solver: bvp4c

2-876

diag

Purpose Diagonal matrices and diagonals of matrix

Syntax X = diag(v,k)
X = diag(v)
v = diag(X,k)
v = diag(X)

Description X = diag(v,k) when v is a vector of n components, returns a square
matrix X of order n+abs(k), with the elements of v on the kth diagonal.
k = 0 represents the main diagonal, k > 0 above the main diagonal,
and k < 0 below the main diagonal.

X = diag(v) puts v on the main diagonal, same as above with k = 0.

v = diag(X,k) for matrix X, returns a column vector v formed from the
elements of the kth diagonal of X.

v = diag(X) returns the main diagonal of X, same as above with k = 0 .

Remarks (diag(X)) is a diagonal matrix.

sum(diag(X)) is the trace of X.

diag([]) generates an empty matrix, ([]).

diag(m-by-1,k) generates a matrix of size m+abs(k)-by-m+abs(k).

2-877

diag

diag(1-by-n,k) generates a matrix of size n+abs(k)-by-n+abs(k).

Examples The statement

diag(-m:m)+diag(ones(2*m,1),1)+diag(ones(2*m,1),-1)

produces a tridiagonal matrix of order 2*m+1.

See Also spdiags, tril, triu, blkdiag

2-878

dialog

Purpose Create and display dialog box

Syntax h = dialog('PropertyName',PropertyValue,...)

Description h = dialog('PropertyName',PropertyValue,...) returns a handle
to a dialog box. This function creates a figure graphics object and sets
the figure properties recommended for dialog boxes. You can specify any
valid figure property value except DockControls, which is always off.

Note By default, the dialog box is modal. A modal dialog box prevents
the user from interacting with other windows before responding. For
more information, see WindowStyle in the MATLAB Figure Properties.

By default, the message dialog box is modal. A modal dialog box prevents
the user from interacting with other windows before responding. For
more information, see WindowStyle in the MATLABFigure Properties.

See Also errordlg, helpdlg, inputdlg, listdlg, msgbox, questdlg, warndlg

figure, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-103 for related functions

2-879

diary

Purpose Save session to file

Syntax diary
diary('filename')
diary off
diary on
diary filename

Description The diary function creates a log of keyboard input and the resulting text
output, with some exceptions (see “Remarks” on page 2-880 for details).
The output of diary is an ASCII file, suitable for searching in, printing,
inclusion in most reports and other documents. If you do not specify
filename, MATLAB creates a file named diary in the current directory.

diary toggles diary mode on and off. To see the status of diary, type
get(0,'Diary'). MATLAB returns either on or off indicating the
diary status.

diary('filename') writes a copy of all subsequent keyboard input and
the resulting output (except it does not include graphics) to the named
file, where filename is the full pathname or filename is in the current
MATLAB directory. If the file already exists, output is appended to the
end of the file. You cannot use a filename called off or on. To see the
name of the diary file, use get(0,'DiaryFile').

diary off suspends the diary.

diary on resumes diary mode using the current filename, or the default
filename diary if none has yet been specified.

diary filename is the unquoted form of the syntax.

Remarks Because the output of diary is plain text, the file does not exactly
mirror input and output from the Command Window:

• Output does not include graphics (figure windows).

• Syntax highlighting and font preferences are not preserved.

2-880

diary

• Hidden components of Command Window output such as hyperlink
information generated with matlab: are shown in plain text. For
example, if you enter the following statement

str = sprintf('%s%s', ...
'', ...
'Generate magic square');

disp(str)

MATLAB displays

However, the diary file, when viewed in a text editor, shows

str = sprintf('%s%s', ...
'', ...
'Generate magic square');

disp(str)
Generate magic square

If you view the output of diary in the Command Window, the
Command Window interprets the <a href ...> statement and
displays it as a hyperlink.

• Viewing the output of diary in a console window might produce
different results compared to viewing diary output in the desktop
Command Window. One example is using the \r option for the
fprintf function; using the \n option might alleviate that problem.

See Also evalc

“Command History” in the MATLAB Desktop Tools and Development
Environment documentation

2-881

diff

Purpose Differences and approximate derivatives

Syntax Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)

Description Y = diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element shorter than
X, of differences between adjacent elements:

[X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)]

If X is a matrix, then diff(X) returns a matrix of row differences:

[X(2:m,:)-X(1:m-1,:)]

In general, diff(X) returns the differences calculated along the first
non-singleton (size(X,dim) > 1) dimension of X.

Y = diff(X,n) applies diff recursively n times, resulting in the nth
difference. Thus, diff(X,2) is the same as diff(diff(X)).

Y = diff(X,n,dim) is the nth difference function calculated along the
dimension specified by scalar dim. If order n equals or exceeds the
length of dimension dim, diff returns an empty array.

Remarks Since each iteration of diff reduces the length of X along dimension
dim, it is possible to specify an order n sufficiently high to reduce dim to
a singleton (size(X,dim) = 1) dimension. When this happens, diff
continues calculating along the next nonsingleton dimension.

Examples The quantity diff(y)./diff(x) is an approximate derivative.

x = [1 2 3 4 5];
y = diff(x)
y =

1 1 1 1

2-882

diff

z = diff(x,2)
z =

0 0 0

Given,

A = rand(1,3,2,4);

diff(A) is the first-order difference along dimension 2.

diff(A,3,4) is the third-order difference along dimension 4.

See Also gradient, prod, sum

2-883

diffuse

Purpose Calculate diffuse reflectance

Syntax R = diffuse(Nx,Ny,Nz,S)

Description R = diffuse(Nx,Ny,Nz,S) returns the reflectance of a surface with
normal vector components [Nx,Ny,Nz]. S specifies the direction to the
light source. You can specify these directions as three vectors[x,y,z] or
two vectors [Theta Phi (in spherical coordinates).

Lambert’s Law: R = cos(PSI) where PSI is the angle between the
surface normal and light source.

See Also specular, surfnorm, surfl

“Lighting as a Visualization Tool”

2-884

dir

Purpose Directory listing

Graphical
Interface

As an alternative to the dir function, use the “Current Directory
Browser”.

Syntax dir
dir name
files = dir('dirname')

Description dir lists the files in the current working directory. Results are not
sorted, but presented in the order returned by the operating system.

dir name lists the specified files. The name argument can be a
pathname, filename, or can include both. You can use absolute and
relative pathnames and wildcards (*).

files = dir('dirname') returns the list of files in the specified
directory (or the current directory, if dirname is not specified) to an
m-by-1 structure with the fields.

Fieldname Description Data Type

name Filename char array

date Modification date
timestamp

char array

bytes Number of bytes allocated
to the file

double

isdir 1 if name is a directory; 0
if not

logical

datenum Modification date as
serial date number

char array

Remarks Listing Drives

On Windows, obtain a list of drives available using the DOS net use
command. In the Command Window, run

2-885

dir

dos('net use')

Or run

[s,r] = dos('net use')

to return the results to the character array r.

DOS Filenames

The MATLAB dir function is consistent with the Microsoft Windows
OS dir command in that both support short filenames generated by
DOS. For example, both of the following commands are equivalent in
both Windows and MATLAB:

dir long_matlab_mfile_name.m
long_matlab_mfile_name.m

dir long_m~1.m
long_matlab_m-file_name.m

Examples List Directory Contents

To view the contents of the matlab/audiovideo directory, type

dir(fullfile(matlabroot, 'toolbox/matlab/audiovideo'))

Using Wildcard and File Extension

To view the MAT files in your current working directory that include
the term java, type

dir *java*.mat

MATLAB returns all filenames that match this specification:

java_array.mat javafrmobj.mat testjava.mat

Using Relative Pathname

To view the M-files in the MATLAB audiovideo directory, type

2-886

dir

dir(fullfile(matlabroot,'toolbox/matlab/audiovideo/*.m'))

MATLAB returns

Contents.m aviinfo.m render_uimgraudiotoolbar.m

audiodevinfo.m aviread.m sound.m

audioplayerreg.m lin2mu.m soundsc.m

audiorecorderreg.m mmcompinfo.m wavfinfo.m

audiouniquename.m mmfileinfo.m wavplay.m

aufinfo.m movie2avi.m wavread.m

auread.m mu2lin.m wavrecord.m

auwrite.m prefspanel.m wavwrite.m

avifinfo.m render_fullaudiotoolbar.m

Returning File List to Structure

To return the list of files to the variable av_files, type

av_files = dir(fullfile(matlabroot, ...
'toolbox/matlab/audiovideo/*.m'))

MATLAB returns the information in a structure array.

av_files =
26x1 struct array with fields:

name
date
bytes
isdir
datenum

Index into the structure to access a particular item. For example,

av_files(3).name
ans =

audioplayerreg.m

See Also cd, copyfile, delete, fileattrib, filebrowser, fileparts, genpath,
isdir, ls, matlabroot, mkdir, mfilename, movefile, rmdir, type, what

2-887

dir (ftp)

Purpose Directory contents on FTP server

Syntax dir(f,'dirname')
d=dir(...)

Description dir(f,'dirname') lists the files in the specified directory, dirname,
on the FTP server f, where f was created using ftp. If dirname is
unspecified, dir lists the files in the current directory of f.

d=dir(...) returns the results in an m-by-1 structure with the
following fields for each file:

Fieldname Description Data Type

name Filename char array

date Modification date
timestamp

char array

bytes Number of bytes allocated
to the file

double

isdir 1 if name is a directory; 0
if not

logical

datenum Modification date as serial
date number

char array

Examples Connect to the MathWorks FTP server and view the contents.

tmw=ftp('ftp.mathworks.com');
dir(tmw)

README incoming matlab outgoing pub pubs

Change to the directory pub/pentium.

cd(tmw,'pub/pentium')

2-888

dir (ftp)

View the contents of that directory.

dir(tmw)

. Intel_resp.txt NYT_2.txt

.. Intel_support.txt NYT_Dec14.uu

Andy_Grove.txt Intel_white.ps New_York_Times.txt

Associated_Press.txt MathWorks_press.txt Nicely_1.txt

CNN.html Mathisen.txt Nicely_2.txt

Coe.txt Moler_1.txt Nicely_3.txt

Cygnus.txt Moler_2.txt Pratt.txt

EE_Times.txt Moler_3.txt README.txt

FAQ.txt Moler_4.txt SPSS.txt

IBM_study.txt Moler_5.txt Smith.txt

Intel_FAX.txt Moler_6.ps p87test.txt

Intel_fix.txt Moler_7.txt p87test.zip

Intel_replace.txt Myths.txt test

Or return the results to the structure m.

m=dir(tmw)

m =

37x1 struct array with fields:
name
date
bytes
isdir
datanum

View element 17.

m(17)

ans =

name: 'Moler_1.txt'

2-889

dir (ftp)

date: '1995 Mar 27'
bytes: 3427
isdir: 0

datenum: 728745

See Also ftp, mkdir (ftp), rmdir (ftp)

2-890

disp

Purpose Display text or array

Syntax disp(X)

Description disp(X) displays an array, without printing the array name. If X
contains a text string, the string is displayed.

Another way to display an array on the screen is to type its name, but
this prints a leading "X=," which is not always desirable.

Note that disp does not display empty arrays.

Examples One use of disp in an M-file is to display a matrix with column labels:

disp(' Corn Oats Hay')
disp(rand(5,3))

which results in

Corn Oats Hay
0.2113 0.8474 0.2749
0.0820 0.4524 0.8807
0.7599 0.8075 0.6538
0.0087 0.4832 0.4899
0.8096 0.6135 0.7741

You can also use the disp command to display a hyperlink in the
Command Window. Include the full hypertext string on a single line
as input to disp.

disp('The MathWorks Web Site')

generates this hyperlink in the Command Window:

The MathWorks Web Site

Click on this link to display The MathWorks home page in a MATLAB
Web browser.

2-891

http://www.mathworks.com

disp

See Also format, int2str, matlabcolon, num2str, rats, sprintf

2-892

disp (serial)

Purpose Serial port object summary information

Syntax obj
disp(obj)

Arguments obj A serial port object or an array of serial port objects.

Description obj or disp(obj) displays summary information for obj.

Remarks In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when:

• Creating a serial port object

• Configuring property values using the dot notation

Use the display summary to quickly view the communication settings,
communication state information, and information associated with read
and write operations.

Example The following commands display summary information for the serial
port object s.

s = serial('COM1')
s.BaudRate = 300
s

2-893

disp (timer)

Purpose Information about timer object

Syntax disp(obj)
obj

Description disp(obj) displays summary information for the timer object, obj.

If obj is an array of timer objects, disp outputs a table of summary
information about the timer objects in the array.

obj, that is, typing the object name alone, does the same as disp(obj)

In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when

• Creating a timer object, using the timer function

• Configuring property values using the dot notation

Examples The following commands display summary information for timer object
t.

t = timer

Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot

Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: []
ErrorFcn: []
StartFcn: []
StopFcn: []

2-894

disp (timer)

This example shows the format of summary information displayed for
an array of timer objects.

t2 = timer;
disp(timerfind)

Timer Object Array
Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1
2 singleShot 1 '' timer-2

See Also timer, get(timer)

2-895

display

Purpose Display text or array (overloaded method)

Syntax display(X)

Description display(X) prints the value of a variable or expression, X. MATLAB
calls display(X) when it interprets a variable or expression, X, that is
not terminated by a semicolon. For example, sin(A) calls display,
while sin(A); does not.

If X is an instance of a MATLAB class, then MATLAB calls the display
method of that class, if such a method exists. If the class has no display
method or if X is not an instance of a MATLAB class, then the MATLAB
built-in display function is called.

Examples A typical implementation of display calls disp to do most of the work
and looks like this.

function display(X)
if isequal(get(0,'FormatSpacing'),'compact')

disp([inputname(1) ' =']);
disp(X)

else
disp(' ')
disp([inputname(1) ' =']);
disp(' ');
disp(X)

end

The expression magic(3), with no terminating semicolon, calls this
function as display(magic(3)).

magic(3)

ans =

8 1 6
3 5 7
4 9 2

2-896

display

As an example of a class display method, the function below
implements the display method for objects of the MATLAB class
polynom.

function display(p)
% POLYNOM/DISPLAY Command window display of a polynom
disp(' ');
disp([inputname(1),' = '])
disp(' ');
disp([' ' char(p)])
disp(' ');

The statement

p = polynom([1 0 -2 -5])

creates a polynom object. Since the statement is not terminated with
a semicolon, the MATLAB interpreter calls display(p), resulting in
the output

p =

x^3 - 2*x - 5

See Also disp, ans, sprintf, special characters

2-897

divergence

Purpose Compute divergence of vector field

Syntax div = divergence(X,Y,Z,U,V,W)
div = divergence(U,V,W)
div = divergence(X,Y,U,V)
div = divergence(U,V)

Description div = divergence(X,Y,Z,U,V,W) computes the divergence of a 3-D
vector field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W
and must be monotonic and 3-D plaid (as if produced by meshgrid).

div = divergence(U,V,W) assumes X, Y, and Z are determined by the
expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

div = divergence(X,Y,U,V) computes the divergence of a 2-D vector
field U, V. The arrays X, Y define the coordinates for U, V and must be
monotonic and 2-D plaid (as if produced by meshgrid).

div = divergence(U,V) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

Examples This example displays the divergence of vector volume data as slice
planes, using color to indicate divergence.

load wind
div = divergence(x,y,z,u,v,w);
slice(x,y,z,div,[90 134],[59],[0]);
shading interp
daspect([1 1 1])
camlight

2-898

divergence

See Also streamtube, curl, isosurface

“Volume Visualization” on page 1-101 for related functions

“Displaying Divergence with Stream Tubes” for another example

2-899

dlmread

Purpose Read ASCII-delimited file of numeric data into matrix

Graphical
Interface

As an alternative to dlmread, use the Import Wizard. To activate the
Import Wizard, select Import data from the File menu.

Syntax M = dlmread(filename)
M = dlmread(filename, delimiter)
M = dlmread(filename, delimiter, R, C)
M = dlmread(filename, delimiter, range)

Description M = dlmread(filename) reads from the ASCII-delimited numeric
data file filename to output matrix M. The filename input is a string
enclosed in single quotes. The delimiter separating data elements is
inferred from the formatting of the file. Comma (,) is the default
delimiter.

M = dlmread(filename, delimiter) reads numeric data from the
ASCII-delimited file filename, using the specified delimiter. Use \t
to specify a tab delimiter.

Note When a delimiter is inferred from the formatting of the file,
consecutive whitespaces are treated as a single delimiter. By contrast, if
a delimiter is specified by the delimiter input, any repeated delimiter
character is treated as a separate delimiter.

M = dlmread(filename, delimiter, R, C) reads numeric data from
the ASCII-delimited file filename, using the specified delimiter. The
values R and C specify the row and column where the upper left corner
of the data lies in the file. R and C are zero based, so that R=0, C=0
specifies the first value in the file, which is the upper left corner.

2-900

dlmread

Note dlmread reads numeric data only. The file being read may contain
nonnumeric data, but this nonnumeric data cannot be within the range
being imported.

M = dlmread(filename, delimiter, range) reads the range specified
by range = [R1 C1 R2 C2] where (R1,C1) is the upper left corner of
the data to be read and (R2,C2) is the lower right corner. You can also
specify the range using spreadsheet notation, as in range = 'A1..B7'.

Remarks If you want to specify an R, C, or range input, but not a delimiter, set
the delimiter argument to the empty string, (two consecutive single
quotes with no spaces in between, ''). For example,

M = dlmread('myfile.dat', '', 5, 2)

Using this syntax enables you to specify the starting row and column
or range to read while having dlmread treat repeated whitespaces as a
single delimiter.

dlmread fills empty delimited fields with zero. Data files having lines
that end with a nonspace delimiter, such as a semicolon, produce a
result that has an additional last column of zeros.

dlmread imports any complex number as a whole into a complex
numeric field, converting the real and imaginary parts to the specified
numeric type. Valid forms for a complex number are

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j

Embedded white-space in a complex number is invalid and is regarded
as a field delimiter.

2-901

dlmread

Examples Example 1

Export the 5-by-8 matrix M to a file, and read it with dlmread, first with
no arguments other than the filename:

rand('state', 0); M = rand(5,8); M = floor(M * 100);
dlmwrite('myfile.txt', M, 'delimiter', '\t')

dlmread('myfile.txt')
ans =

95 76 61 40 5 20 1 41
23 45 79 93 35 19 74 84
60 1 92 91 81 60 44 52
48 82 73 41 0 27 93 20
89 44 17 89 13 19 46 67

Now read a portion of the matrix by specifying the row and column of
the upper left corner:

dlmread('myfile.txt', '\t', 2, 3)
ans =

91 81 60 44 52
41 0 27 93 20
89 13 19 46 67

This time, read a different part of the matrix using a range specifier:

dlmread('myfile.txt', '\t', 'C1..G4')
ans =

61 40 5 20 1
79 93 35 19 74
92 91 81 60 44
73 41 0 27 93

Example 2

Export matrix M to a file, and then append an additional matrix to the
file that is offset one row below the first:

M = magic(3);

2-902

dlmread

dlmwrite('myfile.txt', [M*5 M/5], ' ')

dlmwrite('myfile.txt', rand(3), '-append', ...
'roffset', 1, 'delimiter', ' ')

type myfile.txt

80 10 15 65 3.2 0.4 0.6 2.6
25 55 50 40 1 2.2 2 1.6
45 35 30 60 1.8 1.4 1.2 2.4
20 70 75 5 0.8 2.8 3 0.2

0.99008 0.49831 0.32004
0.78886 0.21396 0.9601
0.43866 0.64349 0.72663

When dlmread imports these two matrices from the file, it pads the
smaller matrix with zeros:

dlmread('myfile.txt')
40.0000 5.0000 30.0000 1.6000 0.2000 1.2000
15.0000 25.0000 35.0000 0.6000 1.0000 1.4000
20.0000 45.0000 10.0000 0.8000 1.8000 0.4000
0.6038 0.0153 0.9318 0 0 0
0.2722 0.7468 0.4660 0 0 0
0.1988 0.4451 0.4187 0 0 0

See Also dlmwrite, textscan, csvread, csvwrite, wk1read, wk1write

2-903

dlmwrite

Purpose Write matrix to ASCII-delimited file

Syntax dlmwrite(filename, M)
dlmwrite(filename, M, 'D')
dlmwrite(filename, M, 'D', R, C)
dlmwrite(filename, M, 'attrib1', value1, 'attrib2', value2,

...)
dlmwrite(filename, M, '-append')
dlmwrite(filename, M, '-append', attribute-value list)

Description dlmwrite(filename, M) writes matrix M into an ASCII format file
using the default delimiter (,) to separate matrix elements. The data is
written starting at the first column of the first row in the destination
file, filename. The filename input is a string enclosed in single quotes.

dlmwrite(filename, M, 'D') writes matrix M into an ASCII format
file, using delimiter D to separate matrix elements. The data is written
starting at the first column of the first row in the destination file,
filename. A comma (,) is the default delimiter. Use \t to produce
tab-delimited files.

dlmwrite(filename, M, 'D', R, C) writes matrix M into an ASCII
format file, using delimiter D to separate matrix elements. The data is
written starting at row R and column C in the destination file, filename.
R and C are zero based, so that R=0, C=0 specifies the first value in the
file, which is the upper left corner.

dlmwrite(filename, M, 'attrib1', value1, 'attrib2', value2,
...) is an alternate syntax to those shown above, in which you specify
any number of attribute-value pairs in any order in the argument list.
Each attribute must be immediately followed by a corresponding value
(see the table below).

Attribute Value

delimiter Delimiter string to be used in separating
matrix elements

2-904

dlmwrite

Attribute Value

newline Character(s) to use in terminating each line
(see table below)

roffset Offset, in rows, from the top of the destination
file to where matrix data is to be written.
Offset is zero based.

coffset Offset, in columns, from the left side of the
destination file to where matrix data is to be
written. Offset is zero based.

precision Numeric precision to use in writing data to
the file. Specify the number of significant
digits or a C-style format string starting in
%, such as '%10.5f'.

This table shows which values you can use when setting the newline
attribute.

Line Terminator Description

’pc’ PC terminator (implies carriage return/line
feed (CR/LF))

’unix’ UNIX terminator (implies line feed (LF))

dlmwrite(filename, M, '-append') appends the matrix to the file. If
you do not specify '-append', dlmwrite overwrites any existing data
in the file.

dlmwrite(filename, M, '-append', attribute-value list) is the
same as the syntax shown above, but accepts a list of attribute-value
pairs. You can place the '-append' flag in the argument list anywhere
between attribute-value pairs, but not in between an attribute
and its value.

Remarks The resulting file is readable by spreadsheet programs.

2-905

dlmwrite

Examples Example 1

Export matrix M to a file delimited by the tab character and using a
precision of six significant digits:

dlmwrite('myfile.txt', M, 'delimiter', '\t', ...
'precision', 6)

type myfile.txt

0.893898 0.284409 0.582792 0.432907
0.199138 0.469224 0.423496 0.22595
0.298723 0.0647811 0.515512 0.579807
0.661443 0.988335 0.333951 0.760365

Example 2

Export matrix M to a file using a precision of six decimal places and the
conventional line terminator for the PC platform:

dlmwrite('myfile.txt', m, 'precision', '%.6f', ...
'newline', 'pc')

type myfile.txt

16.000000,2.000000,3.000000,13.000000
5.000000,11.000000,10.000000,8.000000
9.000000,7.000000,6.000000,12.000000
4.000000,14.000000,15.000000,1.000000

Example 3

Export matrix M to a file, and then append an additional matrix to the
file that is offset one row below the first:

M = magic(3);
dlmwrite('myfile.txt', [M*5 M/5], ' ')

dlmwrite('myfile.txt', rand(3), '-append', ...
'roffset', 1, 'delimiter', ' ')

type myfile.txt

2-906

dlmwrite

80 10 15 65 3.2 0.4 0.6 2.6
25 55 50 40 1 2.2 2 1.6
45 35 30 60 1.8 1.4 1.2 2.4
20 70 75 5 0.8 2.8 3 0.2

0.99008 0.49831 0.32004
0.78886 0.21396 0.9601
0.43866 0.64349 0.72663

When dlmread imports these two matrices from the file, it pads the
smaller matrix with zeros:

dlmread('myfile.txt')
40.0000 5.0000 30.0000 1.6000 0.2000 1.2000
15.0000 25.0000 35.0000 0.6000 1.0000 1.4000
20.0000 45.0000 10.0000 0.8000 1.8000 0.4000
0.6038 0.0153 0.9318 0 0 0
0.2722 0.7468 0.4660 0 0 0
0.1988 0.4451 0.4187 0 0 0

See Also dlmread, csvwrite, csvread, wk1write, wk1read

2-907

dmperm

Purpose Dulmage-Mendelsohn decomposition

Syntax p = dmperm(A)
[p,q,r,s] = dmperm(A)

Description p = dmperm(A) if A is square and has full rank, returns a row
permutation p so that A(p,:) has nonzero diagonal elements. This
permutation is also called a perfect matching. If A is not square or not
full rank, p is a vector that identifies a matching of maximum size: for
each column j of A, either p(j)=0 or A(p(j),j) is nonzero.

[p,q,r,s] = dmperm(A), where A need not be square or full rank,
finds permutations p and q and index vectors r and s so that A(p,q)
is block upper triangular. The kth block has indices (r(k):r(k+1)-1,
s(k):s(k+1)-1). When A is square and has full rank, r = s.

If A is not square or not full rank, the first block may have more columns
and the last block may have more rows. All other blocks are square
and irreducible. dmperm permutes nonzeros to the diagonals of square
blocks, but does not do this for non-square blocks.

Remarks If A is a reducible matrix, the linear system can be solved by
permuting A to a block upper triangular form, with irreducible diagonal
blocks, and then performing block backsubstitution. Only the diagonal
blocks of the permuted matrix need to be factored, saving fill and
arithmetic in the blocks above the diagonal.

In graph theoretic terms, dmperm finds a maximum-size matching in the
bipartite graph of A, and the diagonal blocks of A(p,q) correspond to
the strong Hall components of that graph. The output of dmperm can
also be used to find the connected or strongly connected components
of an undirected or directed graph. For more information see Pothen
and Fan [1].

See Also sprank

2-908

dmperm

References [1] Pothen, Alex and Chin-Ju Fan, “Computing the Block Triangular
Form of a Sparse Matrix,” ACM Transactions on Mathematical Software,
Vol. 16, No. 4, Dec. 1990, pp. 303-324.

2-909

doc

Purpose Reference page in Help browser

GUI
Alternatives

As an alternative to the doc function, use the Help browser Search for
field. Type the function name and click Go.

Syntax doc
doc functionname
doc toolboxname
doc toolboxname/functionname
doc classname.methodname

Description doc opens the Help browser, if it is not already running, or brings
the window to the top, displaying the Contents pane when the Help
browser is already open.

doc functionname displays the reference page for the MATLAB function
functionname in the Help browser. For example, you are looking
at the reference page for the doc function. Here functionname can
be a function, block, property, method, or object. If functionname is
overloaded, that is, if functionname appears in multiple directories
on the MATLAB search path, doc displays the reference page for the
first functionname on the search path and displays a hyperlinked list
of the other functions and their directories in the MATLAB Command
Window. Overloaded functions within the same product are not listed
— use the overloaddirectory form of the syntax. If a reference page
for functionname does not exist, doc displays its M-file help in the
Help browser. The doc function is intended only for help files supplied
by The MathWorks, and is not supported for use with HTML files you
create yourself.

doc toolboxname displays the roadmap page for toolboxname in
the Help browser, which provides a summary of the most pertinent
documentation for that product.

doc toolboxname/functionname displays the reference page for the
functionname that belongs to the specified toolboxname, in the Help
browser. This is useful for overloaded functions.

2-910

doc

doc classname.methodname displays the reference page for the
methodname that is a member of classname.

Note If there is a function called name as well as a toolbox called name,
the roadmap page for the toolbox called name displays. To see the
reference page for the function called name, use doc toolboxname/name,
where toolboxname is the name of the toolbox in which the function
name resides. For example, doc matlab displays the roadmap page
for MATLAB (that is, the matlab toolbox), while doc matlab/matlab
displays the reference page for the matlab startup function for UNIX,
which is in MATLAB.

Examples Type doc abs to display the reference page for the abs function. If
Simulink and Signal Processing Toolbox are installed and on the search
path, the Command Window lists hyperlinks for the abs function in
those products:

doc signal/abs
doc simulink/abs

Type doc signal/abs to display the reference page for the abs function
in Signal Processing Toolbox.

Type doc signal to display the roadmap page for Signal Processing
Toolbox.

Type doc serial.get to display the reference page for the get method
located in the serial directory of MATLAB. This syntax is required
because there is at least one other get function in MATLAB.

See Also docopt, docsearch, help, helpbrowser, lookfor, type, web

For additional information see also “Help for Using MATLAB” in the
MATLAB Desktop Tools and Development Environment documentation.

2-911

docopt

Purpose Web browser for UNIX platforms

Syntax docopt
doccmd = docopt

Description docopt displays the Web browser used with MATLAB on non-Macintosh
UNIX platforms, with the default being netscape (for Netscape). For
non-Macintosh UNIX platforms, you can modify the docopt.m file to
specify the Web browser MATLAB uses. The Web browser is used with
the web function and its -browser option. It is also used for links to
external Web sites from the Help.

doccmd = docopt returns a string containing the command that web
-browser uses to invoke a Web browser.

To change the browser, edit the docopt.m file and change line 51. For
example,

50 elseif isunix % UNIX
51 % doccmd = '';

Remove the comment symbol. In the quote, enter the command that
starts your Web browser, and save the file. For example,

51 doccmd = 'mozilla';

specifies Mozilla as the Web browser MATLAB uses.

See Also doc, edit, helpbrowser, web

2-912

docsearch

Purpose Open Help browser Search pane and search for specified term

GUI
Alternatives

As an alternative to the docsearch function, select Desktop > Help,
type in the Search for field, and click Go.

Syntax docsearch
docsearch word
docsearch('word1 word2 ...')
docsearch('"word1 word2" ...')
docsearch('wo*rd ...')
docsearch('word1 word2 BOOLEANOP word3')

Description docsearch opens the Help browser to the Search Results pane, or if
the Help browser is already open to that pane, brings it to the top.

docsearch word executes a Help browser full-text search for word,
displaying results in the Help browser Search Results pane. If word is
a functionname or blockname, the first entry in Search Results is the
reference page, or reference pages for overloaded functions.

docsearch('word1 word2 ...') executes a Help browser full-text
search for pages containing word1 and word2 and any other specified
words, displaying results in the Help browser Search Results pane.

docsearch('"word1 word2" ...') executes a Help browser full-text
search for pages containing the exact phrase word1 word2 and any
other specified words, displaying results in the Help browser Search
Results pane.

docsearch('wo*rd ...') executes a Help browser full-text search for
pages containing words that begin with wo and end with rd, and any
other specified words, displaying results in the Help browser Search
Results pane. This is also called a wildcard or partial word search. You
can use a wildcard symbol (*) multiple times within a word. You cannot
use the wildcard symbol within an exact phrase. You must use at least
two letters or digits with a wildcard symbol.

docsearch('word1 word2 BOOLEANOP word3') executes a Help
browser full-text search for the term word1 word2 BOOLEANOP word3,

2-913

docsearch

where BOOLEANOP is a Boolean operator (AND, NOT, OR) used to refine
the search. docsearch evaluates NOTs first, then ORs, and finally ANDs.
Results display in the Help browser Search Results pane.

Examples docsearch plot finds all pages that contain the word plot.

docsearch('plot tools') finds all pages that contain the words plot
and tools anywhere in the page.

docsearch('"plot tools"') finds all pages that contain the exact
phrase plot tools.

docsearch('plot* tools') finds all pages that contain the word tools
and the word plot or variations of plot, such as plotting, and plots.

docsearch('"plot tools" NOT "time series"') finds all pages
that contain the exact phrase plot tools, but only if the pages do not
contain the exact phrase time series.

See Also builddocsearchdb, doc, helpbrowser

“Search Documentation and Demos with the Help Browser” in the
MATLAB Desktop Tools and Development Environment documentation

2-914

dos

Purpose Execute DOS command and return result

Syntax dos command
status = dos('command')
[status,result] = dos('command')
[status,result] = dos('command','-echo')

Description dos command calls upon the shell to execute the given command for
Windows systems.

status = dos('command') returns completion status to the status
variable.

[status,result] = dos('command') in addition to completion status,
returns the result of the command to the result variable.

[status,result] = dos('command','-echo') forces the output to the
Command Window, even though it is also being assigned into a variable.

Both console (DOS) programs and Windows programs may be executed,
but the syntax causes different results based on the type of programs.
Console programs have stdout and their output is returned to the
result variable. They are always run in an iconified DOS or Command
Prompt Window except as noted below. Console programs never execute
in the background. Also, MATLAB will always wait for the stdout
pipe to close before continuing execution. Windows programs may be
executed in the background as they have no stdout.

The ampersand, &, character has special meaning. For console programs
this causes the console to open. Omitting this character will cause
console programs to run iconically. For Windows programs, appending
this character will cause the application to run in the background.
MATLAB will continue processing.

2-915

dos

Note Running dos with a command that relies upon the current directory
will fail when the current directory is specified using a UNC pathname.
This is because DOS does not support UNC pathnames. In that
event, MATLAB returns this error: ??? Error using ==> dos DOS
commands may not be executed when the current directory is
a UNC pathname. To work around this limitation, change the directory
to a mapped drive prior to running dos or a function that calls dos.

Examples The following example performs a directory listing, returning a zero
(success) in s and the string containing the listing in w.

[s, w] = dos('dir');

To open the DOS 5.0 editor in a DOS window

dos('edit &')

To open the notepad editor and return control immediately to MATLAB

dos('notepad file.m &')

The next example returns a one in s and an error message in w because
foo is not a valid shell command.

[s, w] = dos('foo')

This example echoes the results of the dir command to the Command
Window as it executes as well as assigning the results to w.

[s, w] = dos('dir', '-echo');

See Also ! (exclamation point), perl, system, unix, winopen

“Running External Programs” in the MATLAB Desktop Tools and
Development Environment documentation

2-916

dot

Purpose Vector dot product

Syntax C = dot(A,B)
C = dot(A,B,dim)

Description C = dot(A,B) returns the scalar product of the vectors A and B. A and
B must be vectors of the same length. When A and B are both column
vectors, dot(A,B) is the same as A'*B.

For multidimensional arrays A and B, dot returns the scalar product
along the first non-singleton dimension of A and B. A and B must have
the same size.

C = dot(A,B,dim) returns the scalar product of A and B in the
dimension dim.

Examples The dot product of two vectors is calculated as shown:

a = [1 2 3]; b = [4 5 6];
c = dot(a,b)

c =
32

See Also cross

2-917

double

Purpose Convert to double precision

Syntax double(x)

Description double(x) returns the double-precision value for X. If X is already a
double-precision array, double has no effect.

Remarks double is called for the expressions in for, if, and while loops if the
expression isn’t already double-precision. double should be overloaded
for any object when it makes sense to convert it to a double-precision
value.

2-918

dragrect

Purpose Drag rectangles with mouse

Syntax [finalrect] = dragrect(initialrect)
[finalrect] = dragrect(initialrect,stepsize)

Description [finalrect] = dragrect(initialrect) tracks one or more rectangles
anywhere on the screen. The n-by-4 matrix initialrect defines the
rectangles. Each row of initialrect must contain the initial rectangle
position as [left bottom width height] values. dragrect returns the
final position of the rectangles in finalrect.

[finalrect] = dragrect(initialrect,stepsize) moves the
rectangles in increments of stepsize. The lower left corner of the first
rectangle is constrained to a grid of size equal to stepsize starting at
the lower left corner of the figure, and all other rectangles maintain
their original offset from the first rectangle.

[finalrect] = dragrect(...) returns the final positions of the
rectangles when the mouse button is released. The default step size is 1.

Remarks dragrect returns immediately if a mouse button is not currently
pressed. Use dragrect in a ButtonDownFcn, or from the command line
in conjunction with waitforbuttonpress, to ensure that the mouse
button is down when dragrect is called. dragrect returns when you
release the mouse button.

If the drag ends over a figure window, the positions of the rectangles
are returned in that figure’s coordinate system. If the drag ends over a
part of the screen not contained within a figure window, the rectangles
are returned in the coordinate system of the figure over which the drag
began.

Note You cannot use normalized figure units with dragrect.

2-919

dragrect

Example Drag a rectangle that is 50 pixels wide and 100 pixels in height.

waitforbuttonpress
point1 = get(gcf,'CurrentPoint') % button down detected
rect = [point1(1,1) point1(1,2) 50 100]
[r2] = dragrect(rect)

See Also rbbox, waitforbuttonpress

“Selecting Region of Interest” on page 1-100 for related functions

2-920

drawnow

Purpose Complete pending drawing events

Syntax drawnow
drawnow expose

Description drawnow flushes the event queue and updates the figure window.

drawnow expose causes only graphics objects to refresh, if needed. It
does not allow callbacks to execute and does not process other events in
the queue.

Other Events That Cause Event Queue Processing

Other events that cause MATLAB to flush the event queue and draw
the figure includes:

• Returning to the MATLAB prompt

• Executing the following functions

- pause

- getframe

- figure

• Functions that wait for user input (e.g., waitforbuttonpress,
waitfor, ginput)

Examples Executing the statements

x = -pi:pi/20:pi;
plot(x,cos(x))
drawnow
title('A Short Title')
grid on

as an M-file updates the current figure after executing the drawnow
function and after executing the final statement.

See Also waitfor, waitforbuttonpress

2-921

drawnow

“Figure Windows” on page 1-94 for related functions

2-922

dsearch

Purpose Search Delaunay triangulation for nearest point

Syntax K = dsearch(x,y,TRI,xi,yi)
K = dsearch(x,y,TRI,xi,yi,S)

Description K = dsearch(x,y,TRI,xi,yi) returns the index into x and y of the
nearest point to the point (xi,yi). dsearch requires a triangulation TRI
of the points x,y obtained using delaunay. If xi and yi are vectors, K is
a vector of the same size.

K = dsearch(x,y,TRI,xi,yi,S) uses the sparse matrix S instead of
computing it each time:

S = sparse(TRI(:,[1 1 2 2 3 3]),TRI(:,[2 3 1 3 1 2]),1,nxy,nxy)

where nxy = prod(size(x)).

See Also delaunay, tsearch, voronoi

2-923

dsearchn

Purpose N-D nearest point search

Syntax k = dsearchn(X,T,XI)
k = dsearchn(X,T,XI,outval)
k = dsearchn(X,XI)
[k,d] = dsearchn(X,...)

Description k = dsearchn(X,T,XI) returns the indices k of the closest points in
X for each point in XI. X is an m-by-n matrix representing m points in
n-dimensional space. XI is a p-by-n matrix, representing p points
in n-dimensional space. T is a numt-by-n+1 matrix, a tessellation of
the data X generated by delaunayn. The output k is a column vector
of length p.

k = dsearchn(X,T,XI,outval) returns the indices k of the closest
points in X for each point in XI, unless a point is outside the convex hull.
If XI(J,:) is outside the convex hull, then K(J) is assigned outval, a
scalar double. Inf is often used for outval. If outval is [], then k is
the same as in the case k = dsearchn(X,T,XI).

k = dsearchn(X,XI) performs the search without using a tessellation.
With large X and small XI, this approach is faster and uses much less
memory.

[k,d] = dsearchn(X,...) also returns the distances d to the closest
points. d is a column vector of length p.

Algorithm dsearchn is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also tsearch, dsearch, tsearchn, griddatan, delaunayn

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa,
“The Quickhull Algorithm for Convex Hulls,” ACM
Transactions on Mathematical Software, Vol. 22, No.
4, Dec. 1996, p. 469-483. Available in PDF format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/.

2-924

http://www.qhull.org/
http://www.qhull.org/COPYING.txt
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/

echo

Purpose Echo M-files during execution

Syntax echo on
echo off
echo
echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

Description The echo command controls the echoing of M-files during execution.
Normally, the commands in M-files are not displayed on the screen
during execution. Command echoing is useful for debugging or for
demonstrations, allowing the commands to be viewed as they execute.

The echo command behaves in a slightly different manner for script
files and function files. For script files, the use of echo is simple; echoing
can be either on or off, in which case any script used is affected.

echo on Turns on the echoing of commands in all script
files

echo off Turns off the echoing of commands in all script
files

echo Toggles the echo state

With function files, the use of echo is more complicated. If echo is
enabled on a function file, the file is interpreted, rather than compiled.
Each input line is then displayed as it is executed. Since this results in
inefficient execution, use echo only for debugging.

echo fcnname on Turns on echoing of the named function file

echo fcnname
off

Turns off echoing of the named function file

echo fcnname Toggles the echo state of the named function file

2-925

echo

echo on all Sets echoing on for all function files

echo off all Sets echoing off for all function files

See Also function

2-926

echodemo

Purpose Run M-file demo step-by-step in Command Window

GUI
Alternatives

As an alternative to the echodemo function, select the demo in the Help
browser Demos tab and click the Run in the Command Window link.

Syntax echodemo filename
echodeemo('filename', cellindex)

Description echodemo filename runs the M-file demo filename step-by-step in the
Command Window. At each step, follow links in the Command Window
to proceed. Depending on the size of the Command Window, you might
have to scroll up to see the links. The script filename was created in
the Editor/Debugger using cells. (The associated HTML demo file for
filename that appears in the Help browser Demos pane was created
using the MATLAB cell publishing feature.) The link to filename also
shows the current cell number, n, and the total number of cells, m, as
n/m, and when clicked, opens filename in the Editor/Debugger. To end
the demo, click the Stop link.

echodeemo('filename', cellindex) runs the M-file type demo
filename, starting with the cell number specified by cellindex.
Because steps prior to cellindex are not run, this statement might
produce an error or unexpected result, depending on the demo.

Note M-file demos run as scripts. Therefore, the variables are part of
the base workspace, which could result in problems if you have any
variables of the same name. For more information, see “Running Demos
and Base Workspace Variables” in the Desktop Tools and Development
Environment documentation.

Examples echodemo quake runs the MATLAB Loma Prieta Earthquake demo.

echodemo ('quake', 6) runs the MATLAB Loma Prieta Earthquake
demo, starting at cell 6.

2-927

echodemo

echodemo ('intro', 3) produces an error because cell 3 of the
MATLAB demo intro requires data created when cells 1 and 2 run.

See Also demo, helpbrowser

2-928

edit

Purpose Edit or create M-file

GUI
Alternatives

As an alternative to the edit function, select File > New or Open in
the MATLAB desktop or any desktop tool.

Syntax edit
edit fun.m
edit file.ext
edit fun1 fun2 fun3 ...
edit class/fun
edit private/fun
edit class/private/fun

Description edit opens a new editor window.

edit fun.m opens the M-file fun.m in the default editor. Note that
fun.m can be a MATLAB partialpath or a complete path. If fun.m
does not exist, a prompt appears asking if you want to create a new
file titled fun.m. After you click Yes, the Editor/Debugger creates a
blank file titled fun.m. If you do not want the prompt to appear in this
situation, select that check box in the prompt. Then when you type edit
fun.m, where fun.m did not previously exist, a new file called fun.m
is automatically opened in the Editor/Debugger. To make the prompt
appear, specify it in preferences for Prompt.

edit file.ext opens the specified file.

edit fun1 fun2 fun3 ... opens fun1.m, fun2.m, fun3.m, and so on,
in the default editor.

edit class/fun, or edit private/fun, or edit class/private/fun
edit a method, private function, or private method for the class named
class.

Remarks To specify the default editor for MATLAB, select Preferences from the
File menu. On the Editor/Debugger pane, select MATLAB editor or
specify another.

2-929

edit

UNIX Users

If you run MATLAB with the -nodisplay startup option, or run
without the DISPLAY environment variable set, edit uses the External
Editor command. It does not use the MATLAB Editor/Debugger,
but instead uses the default editor defined for your system in
matlabroot/X11/app-defaults/Matlab.

You can specify the editor that the edit function uses or specify editor
options by adding the following line to your own.Xdefaults file, located
in ~home:

matlab*externalEditorCommand: $EDITOR -option $FILE

where

• $EDITOR is the name of your default editor, for example, emacs;
leaving it as $EDITOR means your default system editor will be used.

• -option is a valid option flag you can include for the specified editor.

• $FILE means the filename you type with the edit command will
open in the specified editor.

For example,

emacs $FILE

means that when you type edit foo, the file foo will open in the emacs
editor.

After adding the line to your.Xdefaults file, you must run the following
before starting MATLAB:

xrdb -merge ~home/.Xdefaults

See Also open, type

2-930

eig

Purpose Find eigenvalues and eigenvectors

Syntax d = eig(A)
d = eig(A,B)
[V,D] = eig(A)
[V,D] = eig(A,'nobalance')
[V,D] = eig(A,B)
[V,D] = eig(A,B,flag)

Description d = eig(A) returns a vector of the eigenvalues of matrix A.

d = eig(A,B) returns a vector containing the generalized eigenvalues,
if A and B are square matrices.

Note If S is sparse and symmetric, you can use d = eig(S) to returns
the eigenvalues of S. If S is sparse but not symmetric, or if you want to
return the eigenvectors of S, use the function eigs instead of eig.

[V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors
(V) of matrix A, so that A*V = V*D. Matrix D is the canonical form of A —
a diagonal matrix with A’s eigenvalues on the main diagonal. Matrix V
is the modal matrix — its columns are the eigenvectors of A.

If W is a matrix such that W'*A = D*W', the columns of W are the left
eigenvectors of A. Use [W,D] = eig(A.'); W = conj(W) to compute
the left eigenvectors.

[V,D] = eig(A,'nobalance') finds eigenvalues and eigenvectors
without a preliminary balancing step. Ordinarily, balancing improves
the conditioning of the input matrix, enabling more accurate
computation of the eigenvectors and eigenvalues. However, if a matrix
contains small elements that are really due to roundoff error, balancing
may scale them up to make them as significant as the other elements
of the original matrix, leading to incorrect eigenvectors. Use the
nobalance option in this event. See the balance function for more
details.

2-931

eig

[V,D] = eig(A,B) produces a diagonal matrix D of generalized
eigenvalues and a full matrix V whose columns are the corresponding
eigenvectors so that A*V = B*V*D .

[V,D] = eig(A,B,flag) specifies the algorithm used to compute
eigenvalues and eigenvectors. flag can be:

’chol’ Computes the generalized eigenvalues of A and
B using the Cholesky factorization of B. This
is the default for symmetric (Hermitian) A and
symmetric (Hermitian) positive definite B.

’qz’ Ignores the symmetry, if any, and uses the
QZ algorithm as it would for nonsymmetric
(non-Hermitian) A and B.

Note For eig(A), the eigenvectors are scaled so that the norm of each
is 1.0. For eig(A,B), eig(A,'nobalance'), and eig(A,B,flag), the
eigenvectors are not normalized.

Remarks The eigenvalue problem is to determine the nontrivial solutions of the
equation

where is an n-by-n matrix, is a length n column vector, and is a
scalar. The n values of that satisfy the equation are the eigenvalues,
and the corresponding values of are the right eigenvectors. In
MATLAB, the function eig solves for the eigenvalues , and optionally
the eigenvectors .

The generalized eigenvalue problem is to determine the nontrivial
solutions of the equation

2-932

eig

where both and are n-by-n matrices and is a scalar. The values
of that satisfy the equation are the generalized eigenvalues and the
corresponding values of are the generalized right eigenvectors.

If is nonsingular, the problem could be solved by reducing it to a
standard eigenvalue problem

Because can be singular, an alternative algorithm, called the QZ
method, is necessary.

When a matrix has no repeated eigenvalues, the eigenvectors are
always independent and the eigenvector matrix V diagonalizes the
original matrix A if applied as a similarity transformation. However, if a
matrix has repeated eigenvalues, it is not similar to a diagonal matrix
unless it has a full (independent) set of eigenvectors. If the eigenvectors
are not independent then the original matrix is said to be defective.
Even if a matrix is defective, the solution from eig satisfies A*X = X*D.

Examples The matrix

B = [3 -2 -.9 2*eps
-2 4 1 -eps
-eps/4 eps/2 -1 0
-.5 -.5 .1 1];

has elements on the order of roundoff error. It is an example for which
the nobalance option is necessary to compute the eigenvectors correctly.
Try the statements

[VB,DB] = eig(B)
B*VB - VB*DB
[VN,DN] = eig(B,'nobalance')
B*VN - VN*DN

2-933

eig

Algorithm Inputs of Type Double

For inputs of type double, MATLAB uses the following LAPACK
routines to compute eigenvalues and eigenvectors.

Case Routine

Real symmetric A DSYEV

Real nonsymmetric A:

• With preliminary balance step DGEEV (with the scaling factor
SCLFAC = 2 in DGEBAL, instead of
the LAPACK default value of 8)

• d = eig(A,'nobalance') DGEHRD, DHSEQR

• [V,D] = eig(A,'nobalance') DGEHRD, DORGHR, DHSEQR, DTREVC

Hermitian A ZHEEV

Non-Hermitian A:

• With preliminary balance step ZGEEV (with SCLFAC = 2 instead
of 8 in ZGEBAL)

• d = eig(A,'nobalance') ZGEHRD, ZHSEQR

• [V,D] = eig(A,'nobalance') ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC

Real symmetric A, symmetric
positive definite B.

DSYGV

Special case: eig(A,B,'qz')
for real A, B (same as real
nonsymmetric A, real general B)

DGGEV

Real nonsymmetric A, real
general B

DGGEV

Complex Hermitian A,
Hermitian positive definite
B.

ZHEGV

2-934

eig

Case Routine

Special case: eig(A,B,'qz') for
complex A or B (same as complex
non-Hermitian A, complex B)

ZGGEV

Complex non-Hermitian A,
complex B

ZGGEV

Inputs of Type Single

For inputs of type single, MATLAB uses the following LAPACK
routines to compute eigenvalues and eigenvectors.

Case Routine

Real symmetric A SSYEV

Real nonsymmetric A:

• With preliminary balance step SGEEV (with the scaling factor
SCLFAC = 2 in SGEBAL, instead of
the LAPACK default value of 8)

• d = eig(A,'nobalance') SGEHRD, SHSEQR

• [V,D] = eig(A,'nobalance') SGEHRD, SORGHR, SHSEQR, STREVC

Hermitian A CHEEV

Non-Hermitian A:

• With preliminary balance step CGEEV

• d = eig(A,'nobalance') CGEHRD, CHSEQR

• [V,D] = eig(A,'nobalance') CGEHRD, CUNGHR, CHSEQR, CTREVC

Real symmetric A, symmetric
positive definite B.

CSYGV

Special case: eig(A,B,'qz')
for real A, B (same as real
nonsymmetric A, real general B)

SGGEV

2-935

eig

Case Routine

Real nonsymmetric A, real
general B

SGGEV

Complex Hermitian A, Hermitian
positive definite B.

CHEGV

Special case: eig(A,B,'qz') for
complex A or B (same as complex
non-Hermitian A, complex B)

CGGEV

Complex non-Hermitian A,
complex B

CGGEV

See Also balance, condeig, eigs, hess, qz, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-936

http://www.netlib.org/lapack/lug/lapack_lug.html

eigs

Purpose Find largest eigenvalues and eigenvectors of sparse matrix

Syntax d = eigs(A)
[V,D] = eigs(A)
[V,D,flag] = eigs(A)
eigs(A,B)
eigs(A,k)
eigs(A,B,k)
eigs(A,k,sigma)
eigs(A,B,k,sigma
eigs(A,K,sigma,opts)
eigs(A,B,k,sigma,opts)
eigs(Afun,n,...)

Description d = eigs(A) returns a vector of A’s six largest magnitude eigenvalues.
A must be a square matrix, and should be large and sparse.

[V,D] = eigs(A) returns a diagonal matrix D of A’s six largest
magnitude eigenvalues and a matrix V whose columns are the
corresponding eigenvectors.

[V,D,flag] = eigs(A) also returns a convergence flag. If flag is 0
then all the eigenvalues converged; otherwise not all converged.

eigs(A,B) solves the generalized eigenvalue problem A*V == B*V*D.
B must be symmetric (or Hermitian) positive definite and the same
size as A. eigs(A,[],...) indicates the standard eigenvalue problem
A*V == V*D.

eigs(A,k) and eigs(A,B,k) return the k largest magnitude
eigenvalues.

eigs(A,k,sigma) and eigs(A,B,k,sigma) return k eigenvalues based
on sigma, which can take any of the following values:

2-937

eigs

scalar (real
or complex,
including 0)

The eigenvalues closest to sigma. If A is a function,
Afun must return Y = (A-sigma*B)\x (i.e., Y = A\x
when sigma = 0). Note, B need only be symmetric
(Hermitian) positive semi-definite.

’lm’ Largest magnitude (default).

’sm’ Smallest magnitude. Same as sigma = 0. If A is a
function, Afun must return Y = A\x. Note, B need
only be symmetric (Hermitian) positive semi-definite.

For real symmetric problems, the following are also options:

’la’ Largest algebraic ('lr' in MATLAB 5)

’sa’ Smallest algebraic ('sr' in MATLAB 5)

’be’ Both ends (one more from high end if k is odd)

For nonsymmetric and complex problems, the following are also
options:

’lr’ Largest real part

’sr’ Smallest real part

’li’ Largest imaginary part

’si’ Smallest imaginary part

Note The syntax eigs(A,k,...) is not valid when A is scalar. To pass a
value for k, you must specify B as the second argument and k as the third
(eigs(A,B,k,...)). If necessary, you can set B equal to [], the default.

eigs(A,K,sigma,opts) and eigs(A,B,k,sigma,opts) specify an
options structure. Default values are shown in brackets ({}).

2-938

eigs

Parameter Description Values

options.issym 1 if A or A-sigma*B
represented by Afun is
symmetric, 0 otherwise.

[{0} | 1]

options.isreal 1 if A or A-sigma*B
represented by Afun is
real, 0 otherwise.

[0 | {1}]

options.tol Convergence: Ritz estimate
residual <= tol*norm(A).

[scalar |
{eps}]

options.maxit Maximum number of
iterations.

[integer |
{300}]

options.p Number of Lanczos
basis vectors.
p >= 2k (p >= 2k+1 real
nonsymmetric) advised. p
must satisfy k < p <= n
for real symmetric,
k+1 < p <= n otherwise.
Note: If you do not specify a p
value, the default algorithm
uses at least 20 Lanczos
vectors.

[integer |
{2*k}]

options.v0 Starting vector. Randomly
generated by
ARPACK

options.disp Diagnostic information
display level.

[0 | {1} | 2]

options.cholB 1 if B is really its Cholesky
factor chol(B), 0 otherwise.

[{0} | 1]

options.permB Permutation vector permB
if sparse B is really
chol(B(permB,permB)).

[permB | {1:n}]

2-939

eigs

eigs(Afun,n,...) accepts the function handle Afun instead of the
matrix A. See “Function Handles” in the MATLAB Programming
documentation for more information. Afun must accept an input vector
of size n.

y = Afun(x) should return:

A*x if sigma is not specified, or is a string other than
'sm'

A\x if sigma is 0 or 'sm'

(A-sigma*I)\x if sigma is a nonzero scalar (standard eigenvalue
problem). I is an identity matrix of the same
size as A.

(A-sigma*B)\x if sigma is a nonzero scalar (generalized
eigenvalue problem)

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function Afun, if necessary.

The matrix A, A-sigma*I or A-sigma*B represented by Afun is assumed
to be real and nonsymmetric unless specified otherwise by opts.isreal
and opts.issym. In all the eigs syntaxes, eigs(A,...) can be replaced
by eigs(Afun,n,...).

Remarks d = eigs(A,k) is not a substitute for

d = eig(full(A))
d = sort(d)
d = d(end-k+1:end)

but is most appropriate for large sparse matrices. If the problem fits
into memory, it may be quicker to use eig(full(A)).

Algorithm eigs provides the reverse communication required by the Fortran
library ARPACK, namely the routines DSAUPD, DSEUPD, DNAUPD, DNEUPD,
ZNAUPD, and ZNEUPD.

2-940

eigs

Examples Example 1

A = delsq(numgrid('C',15));
d1 = eigs(A,5,'sm')

returns

Iteration 1: a few Ritz values of the 20-by-20 matrix:
0
0
0
0
0

Iteration 2: a few Ritz values of the 20-by-20 matrix:
1.8117
2.0889
2.8827
3.7374
7.4954

Iteration 3: a few Ritz values of the 20-by-20 matrix:
1.8117
2.0889
2.8827
3.7374
7.4954

d1 =

0.5520
0.4787
0.3469
0.2676
0.1334

2-941

eigs

Example 2

This example replaces the matrix A in example 1 with a handle to a
function dnRk. The example is contained in an M-file run_eigs that

• Calls eigs with the function handle @dnRk as its first argument.

• Contains dnRk as a nested function, so that all variables in run_eigs
are available to dnRk.

The following shows the code for run_eigs:

function d2 = run_eigs
n = 139;
opts.issym = 1;
R = 'C';
k = 15;
d2 = eigs(@dnRk,n,5,'sm',opts);

function y = dnRk(x)
y = (delsq(numgrid(R,k))) \ x;

end
end

Example 3

west0479 is a real 479-by-479 sparse matrix with both real and pairs of
complex conjugate eigenvalues. eig computes all 479 eigenvalues. eigs
easily picks out the largest magnitude eigenvalues.

This plot shows the 8 largest magnitude eigenvalues of west0479 as
computed by eig and eigs.

load west0479
d = eig(full(west0479))
dlm = eigs(west0479,8)
[dum,ind] = sort(abs(d));
plot(dlm,'k+')
hold on
plot(d(ind(end-7:end)),'ks')

2-942

eigs

hold off
legend('eigs(west0479,8)','eig(full(west0479))')

Example 4

A = delsq(numgrid('C',30)) is a symmetric positive definite matrix
of size 632 with eigenvalues reasonably well-distributed in the interval
(0 8), but with 18 eigenvalues repeated at 4. The eig function computes
all 632 eigenvalues. It computes and plots the six largest and smallest
magnitude eigenvalues of A successfully with:

A = delsq(numgrid('C',30));
d = eig(full(A));
[dum,ind] = sort(abs(d));
dlm = eigs(A);
dsm = eigs(A,6,'sm');

2-943

eigs

subplot(2,1,1)
plot(dlm,'k+')
hold on
plot(d(ind(end:-1:end-5)),'ks')
hold off
legend('eigs(A)','eig(full(A))',3)
set(gca,'XLim',[0.5 6.5])

subplot(2,1,2)
plot(dsm,'k+')
hold on
plot(d(ind(1:6)),'ks')
hold off
legend('eigs(A,6,''sm'')','eig(full(A))',2)
set(gca,'XLim',[0.5 6.5])

2-944

eigs

However, the repeated eigenvalue at 4 must be handled more carefully.
The call eigs(A,18,4.0) to compute 18 eigenvalues near 4.0 tries
to find eigenvalues of A - 4.0*I. This involves divisions of the form
1/(lambda - 4.0), where lambda is an estimate of an eigenvalue of A.
As lambda gets closer to 4.0, eigs fails. We must use sigma near but not
equal to 4 to find those 18 eigenvalues.

sigma = 4 - 1e-6
[V,D] = eigs(A,18,sigma)

The plot shows the 20 eigenvalues closest to 4 that were computed
by eig, along with the 18 eigenvalues closest to 4 - 1e-6 that were
computed by eigs.

2-945

eigs

See Also eig, svds, function_handle (@)

References [1] Lehoucq, R.B. and D.C. Sorensen, “Deflation Techniques for an
Implicitly Re-Started Arnoldi Iteration,” SIAM J. Matrix Analysis and
Applications, Vol. 17, 1996, pp. 789-821.

[2] Lehoucq, R.B., D.C. Sorensen, and C. Yang, ARPACK Users’ Guide:
Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods, SIAM Publications, Philadelphia, 1998.

[3] Sorensen, D.C., “Implicit Application of Polynomial Filters in a
k-Step Arnoldi Method,” SIAM J. Matrix Analysis and Applications,
Vol. 13, 1992, pp. 357-385.

2-946

ellipj

Purpose Jacobi elliptic functions

Syntax [SN,CN,DN] = ellipj(U,M)
[SN,CN,DN] = ellipj(U,M,tol)

Definition The Jacobi elliptic functions are defined in terms of the integral:

Then

Some definitions of the elliptic functions use the modulus instead of
the parameter . They are related by

The Jacobi elliptic functions obey many mathematical identities; for a
good sample, see [1].

Description [SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN,
CN, and DN, evaluated for corresponding elements of argument U and
parameter M. Inputs U and M must be the same size (or either can be
scalar).

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions
to accuracy tol. The default is eps; increase this for a less accurate but
more quickly computed answer.

Algorithm ellipj computes the Jacobi elliptic functions using the method of the
arithmetic-geometric mean [1]. It starts with the triplet of numbers:

2-947

ellipj

ellipj computes successive iterates with

Next, it calculates the amplitudes in radians using:

being careful to unwrap the phases correctly. The Jacobian elliptic
functions are then simply:

Limitations The ellipj function is limited to the input domain . Map
other values of M into this range using the transformations described in
[1], equations 16.10 and 16.11. U is limited to real values.

See Also ellipke

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, 17.6.

2-948

ellipke

Purpose Complete elliptic integrals of first and second kind

Syntax K = ellipke(M)
[K,E] = ellipke(M)
[K,E] = ellipke(M,tol)

Definition The complete elliptic integral of the first kind [1] is

where , the elliptic integral of the first kind, is

The complete elliptic integral of the second kind

is

Some definitions of K and E use the modulus instead of the parameter
. They are related by

Description K = ellipke(M) returns the complete elliptic integral of the first kind
for the elements of M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first
and second kinds.

2-949

ellipke

[K,E] = ellipke(M,tol) computes the complete elliptic integral to
accuracy tol. The default is eps; increase this for a less accurate but
more quickly computed answer.

Algorithm ellipke computes the complete elliptic integral using the method of
the arithmetic-geometric mean described in [1], section 17.6. It starts
with the triplet of numbers

ellipke computes successive iterations of , , and with

stopping at iteration when , within the tolerance specified by
eps. The complete elliptic integral of the first kind is then

Limitations ellipke is limited to the input domain .

See Also ellipj

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, 17.6.

2-950

ellipsoid

Purpose Generate ellipsoid

Syntax [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n)
[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr)
ellipsoid(axes_handle,...)
ellipsoid(...)

Description [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n) generates a surface
mesh described by three n+1-by-n+1 matrices, enabling surf(x,y,z)
to plot an ellipsoid with center (xc,yc,zc) and semi-axis lengths
(xr,yr,zr).

[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr) uses n = 20.

ellipsoid(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

ellipsoid(...) with no output arguments plots the ellipsoid as a
surface.

Algorithm ellipsoid generates the data using the following equation:

Note that ellipsoid(0,0,0, .5,.5,.5) is equivalent to a unit sphere.

2-951

ellipsoid

Example Generate ellipsoid with size and proportions of a standard U.S. football:

[x, y, z] = ellipsoid(0,0,0,5.9,3.25,3.25,30);
surfl(x, y, z)
colormap copper
axis equal

See Also cylinder, sphere, surf

“Polygons and Surfaces” on page 1-89 for related functions

2-952

else

Purpose Execute statements if condition is false

Syntax if expression, statements1, else statements2, end

Description if expression, statements1, else statements2, end evaluates
expression and, if the evaluation yields logical 1 (true) or a nonzero
result, executes one or more MATLAB commands denoted here as
statements1 or, if the evaluation yields logical 0 (false), executes the
commands in statements2. else is used to delineate the alternate
block of statements..

A true expression has either a logical 1 (true) or nonzero value. For
nonscalar expressions, (for example, “if (matrix A is less than matrix
B)”), true means that every element of the resulting matrix has a true
or nonzero value.

Expressions usually involve relational operations such as (count <
limit) or isreal(A). Simple expressions can be combined by logical
operators (&,|,~) into compound expressions such as (count < limit)
& ((height - offset) >= 0).

See “Program Control Statements” in the MATLAB Programming
documentation for more information on controlling the flow of your
program code.

Examples In this example, if both of the conditions are not satisfied, then the
student fails the course.

if ((attendance >= 0.90) & (grade_average >= 60))
pass = 1;

else
fail = 1;

end;

See Also if, elseif, end, for, while, switch, break, return, relational
operators, logical operators (elementwise and short-circuit)

2-953

elseif

Purpose Execute statements if additional condition is true

Syntax if expression1, statements1, elseif expression2,
statements2,

end

Description if expression1, statements1, elseif expression2,
statements2, end evaluates expression1 and, if the evaluation
yields logical 1 (true) or a nonzero result, executes one or more
MATLAB commands denoted here as statements1. If expression1
is false, MATLAB evaluates the elseif expression, expression2.
If expression2 evaluates to true or a nonzero result, executes the
commands in statements2.

A true expression has either a logical 1 (true) or nonzero value. For
nonscalar expressions, (for example, is matrix A less then matrix B),
true means that every element of the resulting matrix has a true or
nonzero value.

Expressions usually involve relational operations such as (count <
limit) or isreal(A). Simple expressions can be combined by logical
operators (&,|,~) into compound expressions such as (count < limit)
& ((height - offset) >= 0).

See “Program Control Statements” in the MATLAB Programming
documentation for more information on controlling the flow of your
program code.

Remarks elseif , with a space between the else and the if, differs from elseif,
with no space. The former introduces a new, nested if, which must have
a matching end. The latter is used in a linear sequence of conditional
statements with only one terminating end.

The two segments shown below produce identical results. Exactly one of
the four assignments to x is executed, depending upon the values of the
three logical expressions, A, B, and C.

if A if A
x = a x = a

2-954

elseif

else elseif B
if B x = b

x = b elseif C
else x = c

if C else
x = c x = d

else end
x = d

end
end

end

Examples Here is an example showing if, else, and elseif.

for m = 1:k
for n = 1:k

if m == n
a(m,n) = 2;

elseif abs(m-n) == 2
a(m,n) = 1;

else
a(m,n) = 0;

end
end

end

For k=5 you get the matrix

a =

2 0 1 0 0
0 2 0 1 0
1 0 2 0 1
0 1 0 2 0
0 0 1 0 2

See Also if, else, end, for, while, switch, break, return, relational operators,
logical operators (elementwise and short-circuit)

2-955

enableservice

Purpose Enable, disable, or report status of Automation server; enable DDE
server

Syntax state = enableservice('AutomationServer',enable)
state = enableservice('AutomationServer')
enableservice('DDEServer',enable)

Description state = enableservice('AutomationServer',enable) enables or
disables the MATLAB Automation server.

If enable is logical 1 (true), enableservice converts an existing
MATLAB session into an Automation server. If enable is logical 0
(false), enableservice disables the MATLAB Automation server.

state indicates the previous state of the Automation server. If state
= 1, MATLAB was an Automation server. If state is logical 0 (false),
MATLAB was not an Automation server.

state = enableservice('AutomationServer') returns the current
state of the Automation server. If state is logical 1 (true), MATLAB
is an Automation server.

enableservice('DDEServer',enable) enables the MATLAB DDE
server. You cannot disable a DDE server once it has been enabled.
Therefore, the only allowed value for enable is logical 1 (true).

Remarks You can use the outgoing MATLAB DDE commands (ddeinit, ddeterm,
ddeexec, ddereq, ddeadv, ddeunadv, ddepoke) without starting the
DDE server.

Examples Enable an Automation Server Example

Enable the Automation server in the current MATLAB session:

state = enableservice('AutomationServer',true);

Next, show the current state of the MATLAB session:

state = enableservice('AutomationServer')

2-956

enableservice

MATLAB displays state = 1 (true), showing that MATLAB is an
Automation server.

Finally, enable the Automation server and show the previous state by
typing

state = enableservice('AutomationServer',true)

MATLAB displays state = 1 (true), showing that MATLAB previously
was an Automation server.

Note the previous state may be the same as the current state. As seen
in this case, state = 1 shows MATLAB was, and still is, an Automation
server.

Enable a DDE Server Example

Enable the DDE server in the current MATLAB session:

enableservice('DDEServer',true)

2-957

end

Purpose Terminate block of code, or indicate last array index

Syntax end

Description end is used to terminate for, while, switch, try, and if statements.
Without an end statement, for, while, switch, try, and if wait for
further input. Each end is paired with the closest previous unpaired
for, while, switch, try, or if and serves to delimit its scope.

end also marks the termination of an M-file function, although in most
cases, it is optional. end statements are required only in M-files that
employ one or more nested functions. Within such an M-file, every
function (including primary, nested, private, and subfunctions) must be
terminated with an end statement. You can terminate any function
type with end, but doing so is not required unless the M-file contains a
nested function.

The end function also serves as the last index in an indexing expression.
In that context, end = (size(x,k)) when used as part of the kth index.
Examples of this use are X(3:end) and X(1,1:2:end-1). When using
end to grow an array, as in X(end+1)=5, make sure X exists first.

You can overload the end statement for a user object by defining an
end method for the object. The end method should have the calling
sequence end(obj,k,n), where obj is the user object, k is the index in
the expression where the end syntax is used, and n is the total number
of indices in the expression. For example, consider the expression

A(end-1,:)

MATLAB will call the end method defined for A using the syntax

end(A,1,2)

Examples This example shows end used with the for and if statements.

for k = 1:n
if a(k) == 0
a(k) = a(k) + 2;

2-958

end

end
end

In this example, end is used in an indexing expression.

A = magic(5)

A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

B = A(end,2:end)

B =

18 25 2 9

See Also break, for, if, return, switch, try, while

2-959

eomday

Purpose Last day of month

Syntax E = eomday(Y, M)

Description E = eomday(Y, M) returns the last day of the year and month given
by corresponding elements of arrays Y and M.

Examples Because 1996 is a leap year, the statement eomday(1996,2) returns 29.

To show all the leap years in this century, try:

y = 1900:1999;
E = eomday(y, 2);
y(find(E == 29))

ans =
Columns 1 through 6

1904 1908 1912 1916 1920 1924

Columns 7 through 12
1928 1932 1936 1940 1944 1948

Columns 13 through 18
1952 1956 1960 1964 1968 1972

Columns 19 through 24
1976 1980 1984 1988 1992 1996

See Also datenum, datevec, weekday

2-960

eps

Purpose Floating-point relative accuracy

Syntax eps
d = eps(X)
eps('double')
eps('single')

Description eps returns the distance from 1.0 to the next largest double-precision
number, that is eps = 2^(-52).

d = eps(X) is the positive distance from abs(X) to the next larger in
magnitude floating point number of the same precision as X. X may be
either double precision or single precision. For all X,

eps(X) = eps(-X) = eps(abs(X))

eps('double') is the same as eps or eps(1.0).

eps('single') is the same as eps(single(1.0)) or single(2^-23).

Except for numbers whose absolute value is smaller than realmin , if
2^E <= abs(X) < 2^(E+1), then

eps(X) = 2^(E-23) if isa(X,'single')
eps(X) = 2^(E-52) if isa(X,'double')

For all X of class double such that abs(X) <= realmin, eps(X) =
2^(-1074). Similarly, for all X of class single such that abs(X) <=
realmin('single'), eps(X) = 2^(-149).

Replace expressions of the form

if Y < eps * ABS(X)

with

if Y < eps(X)

Examples double precision
eps(1/2) = 2^(-53)

2-961

eps

eps(1) = 2^(-52)
eps(2) = 2^(-51)
eps(realmax) = 2^971
eps(0) = 2^(-1074)

if(abs(x)) <= realmin, eps(x) = 2^(-1074)
eps(realmin/2) = 2^(-1074)
eps(realmin/16) = 2^(-1074)
eps(Inf) = NaN
eps(NaN) = NaN

single precision
eps(single(1/2)) = 2^(-24)
eps(single(1)) = 2^(-23)
eps(single(2)) = 2^(-22)
eps(realmax('single')) = 2^104
eps(single(0)) = 2^(-149)
eps(realmin('single')/2) = 2^(-149)
eps(realmin('single')/16) = 2^(-149)
if(abs(x)) <= realmin('single'), eps(x) = 2^(-149)
eps(single(Inf)) = single(NaN)
eps(single(NaN)) = single(NaN)

See Also realmax, realmin

2-962

eq

Purpose Test for equality

Syntax A == B
eq(A, B)

Description A == B compares each element of array A for equality with the
corresponding element of array B, and returns an array with elements
set to logical 1 (true) where A and B are equal, or logical 0 (false)
where they are not equal. Each input of the expression can be an array
or a scalar value.

If both A and B are scalar (i.e., 1-by-1 matrices), then MATLAB returns
a scalar value.

If both A and B are nonscalar arrays, then these arrays must have
the same dimensions, and MATLAB returns an array of the same
dimensions as A and B.

If one input is scalar and the other a nonscalar array, then the scalar
input is treated as if it were an array having the same dimensions as
the nonscalar input array. In other words, if input A is the number 100,
and B is a 3-by-5 matrix, then A is treated as if it were a 3-by-5 matrix
of elements, each set to 100. MATLAB returns an array of the same
dimensions as the nonscalar input array.

eq(A, B) is called for the syntax A == B when either A or B is an object.

Examples Create two 6-by-6 matrices, A and B, and locate those elements of A that
are equal to the corresponding elements of B:

A = magic(6);
B = repmat(magic(3), 2, 2);

A == B
ans =

0 1 1 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
1 0 0 0 0 0

2-963

eq

0 1 0 0 0 0
1 0 0 0 0 0

See Also ne, le, ge, lt, gt, relational operators

2-964

erf, erfc, erfcx, erfinv, erfcinv

Purpose Error functions

Syntax Y = erf(X)
Y = erfc(X)
Y = erfcx(X)
X = erfinv(Y)
X = erfcinv(Y)

Definition The error function erf(X) is twice the integral of the Gaussian
distribution with 0 mean and variance of .

The complementary error function erfc(X) is defined as

The scaled complementary error function erfcx(X) is defined as

For large X, erfcx(X) is approximately

Description Y = erf(X) returns the value of the error function for each element
of real array X.

Y = erfc(X) computes the value of the complementary error function.

Y = erfcx(X) computes the value of the scaled complementary error
function.

X = erfinv(Y) returns the value of the inverse error function for each
element of Y. Elements of Y must be in the interval [-1 1]. The function
erfinv satisfies for and .

2-965

erf, erfc, erfcx, erfinv, erfcinv

X = erfcinv(Y) returns the value of the inverse of the complementary
error function for each element of Y. Elements of Y must be in the
interval [0 2]. The function erfcinv satisfies for

and .

Remarks The relationship between the complementary error function erfc and
the standard normal probability distribution returned by the Statistics
Toolbox function normcdf is

The relationship between the inverse complementary error function
erfcinv and the inverse standard normal probability distribution
returned by the Statistics Toolbox function norminv is

Examples erfinv(1) is Inf

erfinv(-1) is -Inf.

For abs(Y) > 1, erfinv(Y) is NaN.

Algorithms For the error functions, the MATLAB code is a translation of a
Fortran program by W. J. Cody, Argonne National Laboratory,
NETLIB/SPECFUN, March 19, 1990. The main computation evaluates
near-minimax rational approximations from [1].

For the inverse of the error function, rational approximations accurate
to approximately six significant digits are used to generate an initial
approximation, which is then improved to full accuracy by one step
of Halley’s method.

References [1] Cody, W. J., “Rational Chebyshev Approximations for the Error
Function,” Math. Comp., pgs. 631-638, 1969

2-966

error

Purpose Display message and abort function

Syntax error('message')
error('message', a1, a2, ...)
error('message_id', 'message')
error('message_id', 'message', a1, a2, ...)
error(message_struct)

Description error('message') displays an error message and returns control to the
keyboard. The error message contains the input string message.

The error command has no effect if message is an empty string.

error('message', a1, a2, ...) displays a message string that
contains formatting conversion characters, such as those used with the
MATLAB sprintf function. Each conversion character in message is
converted to one of the values a1, a2, ... in the argument list.

Note MATLAB converts special characters (like \n and %d) in the error
message string only when you specify more than one input argument
with error. See Example 3 below.

error('message_id', 'message') attaches a unique message
identifier, or message_id, to the error message. The identifier enables
you to better identify the source of an error. See “Message Identifiers”
and “Using Message Identifiers with lasterror” in the MATLAB
documentation for more information on the message_id argument and
how to use it.

error('message_id', 'message', a1, a2, ...) includes formatting
conversion characters in message, and the character translations a1,
a2,

error(message_struct) accepts a scalar error structure input
message_struct with at least one of the fields message, identifier,
and stack. (See the help for lasterror for more information on these
fields.)

2-967

error

error(msgstruct.identifier, msgstruct.message);

If the msgstruct input includes a stack field, then the stack field of
the error will be set according to the contents of the stack input. As a
special case, if msgstruct is an empty structure, no action is taken and
error returns without exiting from the M-file.

Remarks In addition to the message_id and message, the error function also
determines where the error occurred, and provides this information
using the stack field of the structure returned by lasterror. The
stack field contains a structure array in the same format as the output
of dbstack. This stack points to the line, function, and M-file in which
the error occurred.

Examples Example 1

The error function provides an error return from M-files:

function foo(x,y)
if nargin ~= 2

error('Wrong number of input arguments')
end

The returned error message looks like this:

foo(pi)

??? Error using ==> foo
Wrong number of input arguments

Example 2

Specify a message identifier and error message string with error:

error('MyToolbox:angleTooLarge', ...
'The angle specified must be less than 90 degrees.');

In your error handling code, use lasterror to determine the message
identifier and error message string for the failing operation:

2-968

error

err = lasterror;

err.message
ans =

The angle specified must be less than 90 degrees.

err.identifier
ans =

MyToolbox:angleTooLarge

If this error is thrown from code in an M-file, you can find the M-file
name, function, and line number using the stack field of the structure
returned by lasterror:

err.stack
ans =

file: 'd:\mytools\plotshape.m'
name: 'check_angles'
line: 26

Example 3

MATLAB converts special characters (like \n and %d) in the error
message string only when you specify more than one input argument
with error. In the single-argument case shown below, \n is taken to
mean backslash-n. It is not converted to a newline character:

error('In this case, the newline \n is not converted.')
??? In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert
special characters. This holds true regardless of whether the additional
argument supplies conversion values or is a message identifier:

error('ErrorTests:convertTest', ...
'In this case, the newline \n is converted.')

??? In this case, the newline
is converted.

2-969

error

See Also lasterror, rethrow, errordlg, warning, lastwarn, warndlg, dbstop,
disp, sprintf

2-970

errorbar

Purpose Plot error bars along curve

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax errorbar(Y,E)
errorbar(X,Y,E)
errorbar(X,Y,L,U)
errorbar(...,LineSpec)
h = errorbar(...)
hlines = errorbar('v6',...)

Description Error bars show the confidence level of data or the deviation along
a curve.

errorbar(Y,E) plots Y and draws an error bar at each element of Y. The
error bar is a distance of E(i) above and below the curve so that each
bar is symmetric and 2*E(i) long.

errorbar(X,Y,E) plots Y versus X with symmetric error bars 2*E(i)
long. X, Y, E must be the same size. When they are vectors, each
error bar is a distance of E(i) above and below the point defined by
(X(i),Y(i)). When they are matrices, each error bar is a distance of
E(i,j) above and below the point defined by (X(i,j),Y(i,j)).

errorbar(X,Y,L,U) plots X versus Y with error bars L(i)+U(i) long
specifying the lower and upper error bars. X, Y, L, and U must be the
same size. When they are vectors, each error bar is a distance of L(i)
below and U(i) above the point defined by (X(i),Y(i)). When they
are matrices, each error bar is a distance of L(i,j) below and U(i,j)
above the point defined by (X(i,j),Y(i,j)).

2-971

errorbar

errorbar(...,LineSpec) uses the color and linestyle specified by the
string 'LineSpec'. The color is applied to the data line and error bars.
The linestyle and marker are applied to the data line only. See plot for
examples of styles.

h = errorbar(...) returns handles to the errorbarseries objects
created. errorbar creates one object for vector input arguments and
one object per column for matrix input arguments. See errorbarseries
properties for more information.

Backward-Compatible Version

hlines = errorbar('v6',...) returns the handles of line objects
instead of errorbarseries objects for compatibility with MATLAB 6.5
and earlier.

See “Plot Objects and Backward Compatibility” for more information.

Remarks When the arguments are all matrices, errorbar draws one line per
matrix column. If X and Y are vectors, they specify one curve.

Examples Draw symmetric error bars that are two standard deviation units in
length.

X = 0:pi/10:pi;
Y = sin(X);
E = std(Y)*ones(size(X));
errorbar(X,Y,E)

2-972

errorbar

See Also LineSpec, plot, std, corrcoef

“Basic Plots and Graphs” on page 1-85 and ConfidenceBounds for
related functions

See Errorbarseries Properties for property descriptions

2-973

Errorbarseries Properties

Purpose Define errorbarseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property editor (propertyeditor).

Note that you cannot define default property values for errorbarseries
objects. See “Plot Objects” for more information on errorbarseries
objects.

Errorbarseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

2-974

Errorbarseries Properties

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

2-975

Errorbarseries Properties

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

CreateFcn
string or function handle

Not available on errorbarseries objects.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure

2-976

Errorbarseries Properties

containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string

Label used by plot legends. The legend function, the figure’s
active legend, and the plot browser use this text when displaying
labels for this object.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing

2-977

Errorbarseries Properties

with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

2-978

Errorbarseries Properties

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

2-979

Errorbarseries Properties

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

2-980

Errorbarseries Properties

When HitTestArea is off, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LData
array equal in size to XData and YData

Errorbar length below data point. The errorbar function uses
this data to determine the length of the errorbar below each data
point. Specify these values in data units. See also UData.

LDataSource
string (MATLAB variable)

Link LData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
LData.

2-981

Errorbarseries Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change LData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

2-982

Errorbarseries Properties

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none

2-983

Errorbarseries Properties

specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this

2-984

Errorbarseries Properties

property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing selection handles on the curve and error bars. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create an errorbarseries object and set
the Tag property:

t = errorbar(Y,E,'Tag','errorbar1')

When you want to access the errorbarseries object, you can use
findobj to find the errorbarseries object’s handle.

The following statement changes the MarkerFaceColor property
of the object whose Tag is errorbar1.

set(findobj('Tag','errorbar1'),'MarkerFaceColor','red')

Type
string (read only)

2-985

Errorbarseries Properties

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For errorbarseries
objects, Type is ’hggroup’. The following statement finds all the
hggroup objects in the current axes.

t = findobj(gca,'Type','hggroup');

UData
array equal in size to XData and YData

Errorbar length above data point. The errorbar function uses
this data to determine the length of the errorbar above each data
point. Specify these values in data units.

UDataSource
string (MATLAB variable)

Link UData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
UData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change UData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the errorbarseries object. Assign
this property the handle of a uicontextmenu object created in the
errorbarseries object’s parent figure. Use the uicontextmenu

2-986

Errorbarseries Properties

function to create the context menu. MATLAB displays the
context menu whenever you right-click over the errorbarseries
object.

UserData
array

User-specified data. This property can be any data you want to
associate with the errorbarseries object (including cell arrays and
structures). The errorbarseries object does not set values for this
property, but you can access it using the set and get functions.

Visible
{on} | off

Visibility of errorbarseries object and its children. By default,
errorbarseries object visibility is on. This means all children of the
errorbarseries object are visible unless the child object’s Visible
property is set to off. Setting an errorbarseries object’s Visible
property to off also makes its children invisible.

XData
array

X-coordinates of the curve. The errorbar function plots a curve
using the x-axis coordinates in the XData array. XData must be
the same size as YData.

If you do not specify XData (i.e., the input argument x), the
errorbar function uses the indices of YData to create the curve.
See the XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify XData
(by setting the XData property or specifying the input argument
x), the errorbar function sets this property to manual.

2-987

Errorbarseries Properties

If you set XDataMode to auto after having specified XData, the
errorbar function resets the x tick-mark labels to the indices
of the YData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Data defining curve. YData contains the data defining the curve.
If YData is a matrix, the errorbar function displays a curve with
error bars for each column in the matrix.

2-988

Errorbarseries Properties

The input argument Y in the errorbar function calling syntax
assigns values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-989

errordlg

Purpose Create and open error dialog box

Syntax h = errordlg
h = errordlg(errorstring)
h = errordlg(errorstring,dlgname)
h = errordlg(errorstring,dlgname,createmode)

Description h = errordlg creates and displays a dialog box with title Error
Dialog that contains the string This is the default error string.
The errordlg function returns the handle of the dialog box in h.

h = errordlg(errorstring) displays a dialog box with title Error
Dialog that contains the string errorstring.

h = errordlg(errorstring,dlgname) displays a dialog box with
titledlgname that contains the string errorstring.

h = errordlg(errorstring,dlgname,createmode) specifies whether
the error dialog box is modal or nonmodal. Optionally, it can also
specify an interpreter for errorstring and dlgname. The createmode
argument can be a string or a structure.

If createmode is a string, it must be one of the values shown in the
following table.

createmode Value Description

modal Replaces the error dialog box having the
specified Title, that was last created or
clicked on, with a modal error dialog box as
specified. All other error dialog boxes with
the same title are deleted. The dialog box
which is replaced can be either modal or
nonmodal.

2-990

errordlg

createmode Value Description

non-modal (default) Creates a new nonmodal error dialog box
with the specified parameters. Existing
error dialog boxes with the same title are
not deleted.

replace Replaces the error dialog box having the
specified Title, that was last created or
clicked on, with a nonmodal error dialog
boxbox as specified. All other error dialog
boxes with the same title are deleted. The
dialog box which is replaced can be either
modal or nonmodal.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution as
well, use theuiwait function. For more information about modal dialog
boxes, see WindowStyle in theFigure Properties.

If CreateMode is a structure, it can have fields WindowStyle and
Interpreter. WindowStyle must be one of the options shown in the
table above. Interpreter is one of the strings 'tex' or 'none'. The
default value for Interpreter is 'none'.

Remarks MATLAB sizes the dialog box to fit the string 'errorstring'. The
error dialog box has an OK push button and remains on the screen until
you press the OK button or the Return key. After pressing the button,
the error dialog box disappears.

The appearance of the dialog box depends on the platform you use.

Examples The function

errordlg('File not found','File Error');

2-991

errordlg

displays this dialog box:

See Also dialog, helpdlg, inputdlg, listdlg, msgbox, questdlg, warndlg

figure, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-103 for related functions

2-992

etime

Purpose Time elapsed between date vectors

Syntax e = etime(t2, t1)

Description e = etime(t2, t1) returns the time in seconds between vectors t1
and t2. The two vectors must be six elements long, in the format
returned by clock:

T = [Year Month Day Hour Minute Second]

Remarks When timing the duration of an event, use the tic and toc functions
instead of clock or etime. These latter two functions are based on the
system time which can be adjusted periodically by the operating system
and thus might not be reliable in time comparison operations.

The etime function measures time elapsed between two points in time,
and does not take into account differences in those points brought about
by daylight savings time or changes in time zone.

Examples Calculate how long a 2048-point real FFT takes.

x = rand(2048, 1);
t = clock; fft(x); etime(clock, t)
ans =

0.4167

Limitations As currently implemented, the etime function fails across month and
year boundaries. Since etime is an M-file, you can modify the code to
work across these boundaries if needed.

See Also clock, cputime, tic, toc

2-993

etree

Purpose Elimination tree

Syntax p = etree(A)
p = etree(A,'col')
p = etree(A,'sym')
[p,q] = etree(...)

Description p = etree(A) returns an elimination tree for the square symmetric
matrix whose upper triangle is that of A. p(j) is the parent of column j
in the tree, or 0 if j is a root.

p = etree(A,'col') returns the elimination tree of A'*A.

p = etree(A,'sym') is the same as p = etree(A).

[p,q] = etree(...) also returns a postorder permutation q of the tree.

See Also treelayout, treeplot, etreeplot

2-994

etreeplot

Purpose Plot elimination tree

Syntax etreeplot(A)
etreeplot(A,nodeSpec,edgeSpec)

Description etreeplot(A) plots the elimination tree of A (or A+A', if non-symmetric).

etreeplot(A,nodeSpec,edgeSpec) allows optional parameters
nodeSpec and edgeSpec to set the node or edge color, marker, and
linestyle. Use '' to omit one or both.

See Also etree, treeplot, treelayout

2-995

eval

Purpose Execute string containing MATLAB expression

Syntax eval(expression)
[a1, a2, a3, ...] = eval(function(b1, b2, b3, ...))

Description eval(expression) executes expression, a string containing any valid
MATLAB expression. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1, int2str(var), string2, ...]

[a1, a2, a3, ...] = eval(function(b1, b2, b3, ...)) executes
function with arguments b1, b2, b3, ..., and returns the results
in the specified output variables.

Remarks Using the eval output argument list is recommended over including
the output arguments in the expression string. The first syntax
below avoids strict checking by the MATLAB parser and can produce
untrapped errors and other unexpected behavior.

% Recommended syntax
[a1, a2, a3, ...] = eval('function(var)')

% Not recommended
eval('[a1, a2, a3, ...] = function(var)')

Examples Example 1 – Working with a Series of Files

Load MAT-files August1.mat to August10.mat into the MATLAB
workspace:

for d=1:10
s = ['load August' int2str(d) '.mat']
eval(s)

end

These are the strings being evaluated:

2-996

eval

s =
load August1.mat

s =
load August2.mat

s =
load August3.mat

- etc. -

Example 2 – Assigning to Variables with Generated Names

Generate variable names that are unique in the MATLAB workspace
and assign a value to each using eval:

for k = 1:5
t = clock;
pause(uint8(rand * 10));
v = genvarname('time_elapsed', who);
eval([v ' = etime(clock,t)'])
end

As this code runs, eval creates a unique statement for each assignment:

time_elapsed =
5.0070

time_elapsed1 =
2.0030

time_elapsed2 =
7.0010

time_elapsed3 =
8.0010

time_elapsed4 =
3.0040

Example 3 – Evaluating a Returned Function Name

The following command removes a figure by evaluating its
CloseRequestFcn property as returned by get.

eval(get(h,'CloseRequestFcn'))

2-997

eval

See Also evalc, evalin, assignin, feval, catch, lasterror, try

2-998

evalc

Purpose Evaluate MATLAB expression with capture

Syntax T = evalc(S)
[T, X, Y, Z, ...] = evalc(S)

Description T = evalc(S) is the same as eval(S) except that anything that would
normally be written to the command window is captured and returned
in the character array T (lines in T are separated by \n characters).

[T, X, Y, Z, ...] = evalc(S) is the same as [X, Y, Z, ...] =
eval(S) except that any output is captured into T.

Remark When you are using evalc, diary, more, and input are disabled.

See Also eval, evalin, assignin, feval, diary, input, more

2-999

evalin

Purpose Execute MATLAB expression in specified workspace

Syntax evalin(ws, expression)
[a1, a2, a3, ...] = evalin(ws, expression)

Description evalin(ws, expression) executes expression, a string containing
any valid MATLAB expression, in the context of the workspace ws. ws
can have a value of 'base' or 'caller' to denote the MATLAB base
workspace or the workspace of the caller function. You can construct
expression by concatenating substrings and variables inside square
brackets:

expression = [string1, int2str(var), string2,...]

[a1, a2, a3, ...] = evalin(ws, expression) executes
expression and returns the results in the specified output variables.
Using the evalin output argument list is recommended over including
the output arguments in the expression string:

evalin(ws,'[a1, a2, a3, ...] = function(var)')

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

Remarks The MATLAB base workspace is the workspace that is seen from
the MATLAB command line (when not in the debugger). The caller
workspace is the workspace of the function that called the M-file. Note,
the base and caller workspaces are equivalent in the context of an M-file
that is invoked from the MATLAB command line.

If you use evalin('caller', ws) in the MATLAB debugger after
having changed your local workspace context with dbup or dbdown,
MATLAB evaluates the expression in the context of the function that is
one level up in the stack from your current workspace context.

Examples This example extracts the value of the variable var in the MATLAB
base workspace and captures the value in the local variable v:

2-1000

evalin

v = evalin('base', 'var');

Limitation evalin cannot be used recursively to evaluate an expression.
For example, a sequence of the form evalin('caller',
'evalin(''caller'', ''x'')') doesn’t work.

See Also assignin, eval, evalc, feval, catch, lasterror, try

2-1001

eventlisteners

Purpose List of events attached to listeners

Syntax C = h.eventlisteners
C = eventlisteners(h)

Description C = h.eventlisteners lists any events, along with their event handler
routines, that have been registered with control, h. The function returns
cell array of strings C, with each row containing the name of a registered
event and the handler routine for that event. If the control has no
registered events, then eventlisteners returns an empty cell array.

Events and their event handler routines must be registered in order for
the control to respond to them. You can register events either when
you create the control, using actxcontrol, or at any time afterwards,
using registerevent.

C = eventlisteners(h) is an alternate syntax for the same operation.

Examples mwsamp Control Example

Create an mwsamp control, registering only the Click event.
eventlisteners returns the name of the event and its event handler
routine, myclick:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...

[0 0 200 200], f, ...
{'Click' 'myclick'});

h.eventlisteners
ans =

'click' 'myclick'

Register two more events: DblClick and MouseDown. eventlisteners
returns the names of the three registered events along with their
respective handler routines:

h.registerevent({'DblClick', 'my2click'; ...
'MouseDown' 'mymoused'});

2-1002

eventlisteners

h.eventlisteners
ans =

'click' 'myclick'
'dblclick' 'my2click'
'mousedown' 'mymoused'

Now unregister all events for the control. eventlisteners returns
an empty cell array, indicating that no events have been registered
for the control:

h.unregisterallevents

h.eventlisteners
ans =

{}

Excel Workbook Example

excel = actxserver('Excel.Application');
wbs = excel.Workbooks;
wb = wbs.Add;
wb.registerevent({'Activate' 'EvtActivateHandler'})
wb.eventlisteners

ans =

'Activate' 'EvtActivateHandler'

See Also events, registerevent, unregisterevent, unregisterallevents,
isevent

2-1003

events

Purpose List of events control can trigger

Syntax S = h.events
S = events(h)

Description S = h.events returns structure array S containing all events, both
registered and unregistered, known to the control, and the function
prototype used when calling the event handler routine. For each array
element, the structure field is the event name and the contents of that
field is the function prototype for that event’s handler.

S = events(h) is an alternate syntax for the same operation.

Note The send function is identical to events, but support for send will
be removed in a future release of MATLAB.

Examples List Control Events Example

Create an mwsamp control and list all events:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

h.events
Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,

Variant x, Variant y)

Assign the output to a variable and get one field of the returned
structure:

ev = h.events;

ev.MouseDown
ans =

2-1004

events

void MouseDown(int16 Button, int16 Shift, Variant x, Variant y)

List Excel Workbook Events Example

Open Excel and list all events for a Workbook object:

excel = actxserver('Excel.Application');
wbs = excel.Workbooks;
wb = wbs.Add;
wb.events

MATLAB displays all events supported by the Workbook object.

Open = void Open()
Activate = void Activate()
Deactivate = void Deactivate()
BeforeClose = void BeforeClose(bool Cancel)

.

.

See Also isevent, eventlisteners, registerevent, unregisterevent,
unregisterallevents

2-1005

Execute

Purpose Execute MATLAB command in server

Syntax MATLAB Client

result = h.Execute('command')
result = Execute(h, 'command')
result = invoke(h, 'Execute', 'command')

Method Signature

BSTR Execute([in] BSTR command)

Visual Basic Client

Execute(command As String) As String

Description The Execute function executes the MATLAB statement specified by the
string command in the MATLAB Automation server attached to handle h.

The server returns output from the command in the string, result. The
result string also contains any warning or error messages that might
have been issued by MATLAB as a result of the command.

Note that if you terminate the MATLAB command string with a
semicolon and there are no warnings or error messages, result might
be returned empty.

Remarks If you want to be able to display output from Execute in the client
window, you must specify an output variable (i.e., result in the above
syntax statements).

Server function names, like Execute, are case sensitive when used with
dot notation (the first syntax shown).

All three versions of the MATLAB client syntax perform the same
operation.

Examples Execute the MATLAB version function in the server and return the
output to the MATLAB client.

2-1006

Execute

MATLAB Client

h = actxserver('matlab.application');
server_version = h.Execute('version')
server_version =
ans =

6.5.0.180913a (R13)

Visual Basic.net Client

Dim Matlab As Object
Dim server_version As String
Matlab = CreateObject("matlab.application")
server_version = Matlab.Execute("version")

See Also Feval, PutFullMatrix, GetFullMatrix, PutCharArray, GetCharArray

2-1007

exifread

Purpose Read EXIF information from JPEG and TIFF image files

Syntax output = exifread(filename)

Description output = exifread(filename) reads the Exchangeable Image File
Format (EXIF) data from the file specified by the string filename.
filename must specify a JPEG or TIFF image file. output is a structure
containing metadata values about the image or images in imagefile.

Note exifread returns all EXIF tags and does not process them in
any way.

EXIF is a standard used by digital camera manufacturers to store
information in the image file, such as, the make and model of a camera,
the time the picture was taken and digitized, the resolution of the image,
exposure time, and focal length. For more information about EXIF and
the meaning of metadata attributes, see http://www.exif.org/.

See Also imfinfo, imread

2-1008

http://www.exif.org/

exist

Purpose Check existence of variable, function, directory, or Java class

Graphical
Interface

As an alternative to the exist function, use the Workspace Browser or
the Current Directory Browser.

Syntax exist name
exist name kind
A = exist('name','kind')

Description exist name returns the status of name:

0 If name does not exist.

1 If name is a variable in the workspace.

2 If name is an M-file on your MATLAB search path. It also
returns 2 when name is the full pathname to a file or the name
of an ordinary file on your MATLAB search path.

3 If name is a MEX- or DLL-file on your MATLAB search path.

4 If name is an MDL-file on your MATLAB search path.

5 If name is a built-in MATLAB function.

6 If name is a P-file on your MATLAB search path.

7 If name is a directory.

8 If name is a Java class. (exist returns 0 if you start MATLAB
with the -nojvm option.)

exist name kind returns the status of name for the specified kind. If
name of type kind does not exist, it returns 0. The kind argument may
be one of the following:

builtin Checks only for built-in functions.

class Checks only for Java classes.

dir Checks only for directories.

2-1009

exist

file Checks only for files or directories.

var Checks only for variables.

If name belongs to more than one category (e.g., if there are both an
M-file and variable of the given name) and you do not specify a kind
argument, exist returns one value according to the order of evaluation
shown in the table below. For example, if name matches both a directory
and M-file name, exist returns 7, identifying it as a directory.

Order of
Evaluation Return Value Type of Entity

1 1 Variable

2 5 Built-in

3 7 Directory

4 3 MEX or DLL-file

5 4 MDL-file

6 6 P-file

7 2 M-file

8 8 Java class

A = exist('name','kind') is the function form of the syntax.

Remarks If name specifies a filename, that filename may include an extension
to preclude conflicting with other similar filenames. For example,
exist('file.ext').

If name specifies a filename, MATLAB attempts to locate the file,
examines the filename extension, and determines the value to return
based on the extension alone. MATLAB does not examine the contents
or internal structure of the file.

You can specify a partial path to a directory or file. A partial pathname
is a pathname relative to the MATLAB path that contains only the
trailing one or more components of the full pathname. For example,

2-1010

exist

both of the following commands return 2, identifying mkdir.m as an
M-file. The first uses a partial pathname:

exist('matlab/general/mkdir.m')
exist([matlabroot '/toolbox/matlab/general/mkdir.m'])

If a file or directory is not on the search path, then name must specify
either a full pathname, a partial pathname relative to MATLABPATH,
a partial pathname relative to your current directory, or the file or
directory must reside in your current working directory.

If name is a Java class, then exist('name') returns an 8. However, if
name is a Java class file, then exist('name') returns a 2.

Remarks To check for the existence of more than one variable, use the ismember
function. For example,

a = 5.83;
c = 'teststring';
ismember({'a','b','c'},who)

ans =

1 0 1

Examples This example uses exist to check whether a MATLAB function is a
built-in function or a file:

type = exist('plot')
type =
5

This indicates that plot is a built-in function.

In the next example, exist returns 8 on the Java class, Welcome, and
returns 2 on the Java class file, Welcome.class:

exist Welcome
ans =

2-1011

exist

8

exist javaclasses/Welcome.class
ans =

2

indicates there is a Java class Welcome and a Java class file
Welcome.class.

The following example indicates that testresults is both a variable in
the workspace and a directory on the search path:

exist('testresults','var')
ans =

1
exist('testresults','dir')
ans =

7

See Also assignin, computer, dir, evalin, help, inmem, isfield, isempty,
lookfor, mfilename, partialpath, what, which, who

2-1012

exit

Purpose Terminate MATLAB (same as quit)

GUI
Alternatives

As an alternative to the exit function, select File > Exit MATLAB or
click the Close box in the MATLAB desktop.

Syntax exit

Description exit terminates the current MATLAB session after running finish.m,
if the file finish.m exists. It performs the same as quit and takes
the same termination options, such as force. For more information,
see quit.

See Also quit, finish

2-1013

exp

Purpose Exponential

Syntax Y = exp(X)

Description The exp function is an elementary function that operates element-wise
on arrays. Its domain includes complex numbers.

Y = exp(X) returns the exponential for each element of X.
For complex , it returns the complex exponential

.

Remark Use expm for matrix exponentials.

See Also expm, log, log10, expint

2-1014

expint

Purpose Exponential integral

Syntax Y = expint(X)

Definitions The exponential integral computed by this function is defined as

Another common definition of the exponential integral function is the
Cauchy principal value integral

which, for real positive x, is related to expint as

Description Y = expint(X) evaluates the exponential integral for each element of X.

References [1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical
Functions. Chapter 5, New York: Dover Publications, 1965.

2-1015

expm

Purpose Matrix exponential

Syntax Y = expm(X)

Description Y = expm(X) raises the constant to the matrix power X.

Although it is not computed this way, if X has a full set of eigenvectors V
with corresponding eigenvalues D, then

[V,D] = EIG(X) and EXPM(X) = V*diag(exp(diag(D)))/V

Use exp for the element-by-element exponential.

Algorithm expm uses the Padé approximation with scaling and squaring. See
reference [3], below.

Note The expmdemo1, expmdemo2, and expmdemo3 demos illustrate
the use of Padé approximation, Taylor series approximation, and
eigenvalues and eigenvectors, respectively, to compute the matrix
exponential. References [1] and [2] describe and compare many
algorithms for computing a matrix exponential.

Examples This example computes and compares the matrix exponential of A and
the exponential of A.

A = [1 1 0
0 0 2
0 0 -1];

expm(A)
ans =

2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

2-1016

expm

exp(A)
ans =

2.7183 2.7183 1.0000
1.0000 1.0000 7.3891
1.0000 1.0000 0.3679

Notice that the diagonal elements of the two results are equal. This
would be true for any triangular matrix. But the off-diagonal elements,
including those below the diagonal, are different.

See Also exp, expm1, funm, logm, eig, sqrtm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, p. 384, Johns
Hopkins University Press, 1983.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute
the Exponential of a Matrix,” SIAM Review 20, 1978, pp. 801-836.

[3] Higham, N. J., “The Scaling and Squaring Method for the Matrix
Exponential Revisited,” SIAM J. Matrix Anal. Appl., 26(4) (2005), pp.
1179-1193.

2-1017

expm1

Purpose Compute exp(x)-1 accurately for small values of x

Syntax y = expm1(x)

Description y = expm1(x) computes exp(x)-1, compensating for the roundoff in
exp(x).

For small x, expm1(x) is approximately x, whereas exp(x)-1 can be
zero.

See Also exp, expm, log1p

2-1018

export2wsdlg

Purpose Export variables to workspace

Syntax export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction,functionlist)
hdialog = export2wsdlg(...)
[hdialog,ok_pressed] = export2wsdlg(...)

Description export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport) creates a dialog with a series of check boxes and edit
fields. checkboxlabels is a cell array of labels for the check boxes.
defaultvariablenames is a cell array of strings that serve as a basis for
variable names that appear in the edit fields. itemstoexport is a cell
array of the values to be stored in the variables. If there is only one item
to export, export2wsdlg creates a text control instead of a check box.

Note By default, the dialog box is modal. A modal dialog box prevents
the user from interacting with other windows before responding.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title) creates the dialog with title as its title.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected) creates the dialog allowing the user
to control which check boxes are checked. selected is a logical array
whose length is the same as checkboxlabels. True indicates that the
check box should initially be checked, false unchecked.

2-1019

export2wsdlg

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction) creates the dialog
with a help button. helpfunction is a callback that displays help.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction,functionlist)
creates a dialog that enables the user to pass in functionlist, a
cell array of functions and optional arguments that calculate, then
return the value to export. functionlist should be the same length
as checkboxlabels.

hdialog = export2wsdlg(...) returns the handle of the dialog.

[hdialog,ok_pressed] = export2wsdlg(...) sets ok_pressed to
true if the OK button is pressed, or false otherwise. If two return
arguments are requested, hdialog is [] and the function does not
return until the dialog is closed.

The user can edit the text fields to modify the default variable names. If
the same name appears in multiple edit fields, export2wsdlg creates
a structure using that name. It then uses the defaultvariablenames
as fieldnames for that structure.

The lengths of checkboxlabels, defaultvariablenames,
itemstoexport and selected must all be equal.

The strings in defaultvariablenames must be unique.

Examples This example creates a dialog box that enables the user to save the
variables sumA and/or meanA to the workspace. The dialog box title is
Save Sums to Workspace.

A = randn(10,1);
checkLabels = {'Save sum of A to variable named:' ...

'Save mean of A to variable named:'};
varNames = {'sumA','meanA'};
items = {sum(A),mean(A)};
export2wsdlg(checkLabels,varNames,items,...

'Save Sums to Workspace');

2-1020

eye

Purpose Identity matrix

Syntax Y = eye(n)
Y = eye(m,n)
eye([m n])
Y = eye(size(A))
eye(m, n, classname)
eye([m,n],classname)

Description Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m,n) or eye([m n]) returns an m-by-n matrix with 1’s on the
diagonal and 0’s elsewhere.

Note The size inputs m and n should be nonnegative integers. Negative
integers are treated as 0.

Y = eye(size(A)) returns an identity matrix the same size as A.

eye(m, n, classname) or eye([m,n],classname) is an m-by-n
matrix with 1’s of class classname on the diagonal and zeros of class
classname elsewhere. classname is a string specifying the data type
of the output. classname can have the following values: 'double',
'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
'int64', or 'uint64'.

Example: x = eye(2,3,'int8');

Limitations The identity matrix is not defined for higher-dimensional arrays. The
assignment y = eye([2,3,4]) results in an error.

See Also ones, rand, randn, zeros

2-1021

ezcontour

Purpose Easy-to-use contour plotter

Syntax ezcontour(fun)
ezcontour(fun,domain)
ezcontour(...,n)
ezcontour(axes_handle,...)
h = ezcontour(...)

Description ezcontour(fun) plots the contour lines of fun(x,y) using the contour
function. fun is plotted over the default domain: -2π < x < 2π, -2π <
y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see Remarks).

ezcontour(fun,domain) plots fun(x,y) over the specified domain.
domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a
2-by-1 vector [min, max] (where min < x < max, min < y < max).

ezcontour(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontour(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezcontour(...) returns the handles to contour objects in h.

ezcontour automatically adds a title and axis labels.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezcontour. For example, the
MATLAB syntax for a contour plot of the expression

sqrt(x.^2 + y.^2)

2-1022

ezcontour

is written as

ezcontour('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontour.

If the function to be plotted is a function of the variables u and v (rather
than x and y), the domain endpoints umin, umax, vmin, and vmax are
sorted alphabetically. Thus, ezcontour('u^2 - v^3',[0,1],[3,6])
plots the contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezcontour.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontour(fh)

When using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since
ezcontour does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example, k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then use an anonymous function to specify that parameter:

ezcontour(@(x,y)myfun(x,y,2))

Examples The following mathematical expression defines a function of two
variables, x and y.

2-1023

ezcontour

ezcontour requires a function handle argument that expresses this
function using MATLAB syntax. This example uses an anonymous
function, which you can define in the command window without
creating an M-file.

f=@(x,y) 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
- 1/3*exp(-(x+1).^2 - y.^2);

For convenience, this function is written on three lines. The MATLAB
peaks function evaluates this expression for different sizes of grids.

Pass the function handle f to ezcontour along with a domain ranging
from -3 to 3 in both x and y and specify a computational grid of 49-by-49:

ezcontour(f,[-3,3],49)

2-1024

ezcontour

In this particular case, the title is too long to fit at the top of the graph,
so MATLAB abbreviates the string.

See Also contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar,
ezsurf, ezsurfc, function_handle

“Contour Plots” on page 1-88 for related functions

2-1025

ezcontourf

Purpose Easy-to-use filled contour plotter

Syntax ezcontourf(fun)
ezcontourf(fun,domain)
ezcontourf(...,n)
ezcontourf(axes_handle,...)
h = ezcontourf(...)

Description ezcontourf(fun) plots the contour lines of fun(x,y)using the
contourf function. fun is plotted over the default domain: -2π < x <
2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and Anonymous Functions) or a string
(see Remarks).

ezcontourf(fun,domain) plots fun(x,y) over the specified domain.
domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a
2-by-1 vector [min, max], where min < x < max, min < y < max).

ezcontourf(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontourf(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = ezcontourf(...) returns the handles to contour objects in h.

ezcontourf automatically adds a title and axis labels.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezcontourf. For example, the
MATLAB syntax for a filled contour plot of the expression

sqrt(x.^2 + y.^2);

2-1026

ezcontourf

is written as

ezcontourf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontourf.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax are
sorted alphabetically. Thus, ezcontourf('u^2 - v^3',[0,1],[3,6])
plots the contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezcontourf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontourf(fh)

When using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since
ezcontourf does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example, k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezcontourf(@(x,y)myfun(x,y,2))

Examples The following mathematical expression defines a function of two
variables, x and y.

2-1027

ezcontourf

ezcontourf requires a string argument that expresses this function
using MATLAB syntax to represent exponents, natural logs, etc. This
function is represented by the string

f = ['3*(1-x)^2*exp(-(x^2)-(y+1)^2)',...
'- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)',...
'- 1/3*exp(-(x+1)^2 - y^2)'];

For convenience, this string is written on three lines and concatenated
into one string using square brackets.

Pass the string variable f to ezcontourf along with a domain ranging
from -3 to 3 and specify a grid of 49-by-49:

ezcontourf(f,[-3,3],49)

2-1028

ezcontourf

In this particular case, the title is too long to fit at the top of the graph,
so MATLAB abbreviates the string.

See Also contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar,
ezsurf, ezsurfc, function_handle

“Contour Plots” on page 1-88 for related functions

2-1029

ezmesh

Purpose Easy-to-use 3-D mesh plotter

Syntax ezmesh(fun)
ezmesh(fun,domain)
ezmesh(funx,funy,funz)
ezmesh(funx,funy,funz,[smin,smax,tmin,tmax])
ezmesh(funx,funy,funz,[min,max]
ezmesh(...,n)
ezmesh(...,'circ')
ezmesh(axes_handle,...)
h = ezmesh(...)

Description ezmesh(fun) creates a graph of fun(x,y) using the mesh function. fun
is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and Anonymous Functions) or a string
(see the Remarks section).

ezmesh(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezmesh(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezmesh(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezmesh(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezmesh(...,n) plots fun over the default domain using an n-by-n grid.
The default value for n is 60.

ezmesh(...,'circ') plots fun over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

2-1030

ezmesh

h = ezmesh(...) returns the handle to a surface object in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezmesh. For example, the MATLAB
syntax for a mesh plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezmesh('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmesh.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezmesh('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezmesh.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmesh(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezmesh does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

2-1031

ezmesh

then you can use an anonymous function to specify that parameter:

ezmesh(@(x,y)myfun(x,y,2))

Examples This example visualizes the function

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a
uniform blue color by setting the colormap to a single color:

fh = @(x,y) x.*exp(-x.^2-y.^2);
ezmesh(fh,40)
colormap([0 0 1])

2-1032

ezmesh

See Also ezmeshc, function_handle, mesh

“Function Plots” on page 1-88 for related functions

2-1033

ezmeshc

Purpose Easy-to-use combination mesh/contour plotter

Syntax ezmeshc(fun)
ezmeshc(fun,domain)
ezmeshc(funx,funy,funz)
ezmeshc(funx,funy,funz,[smin,smax,tmin,tmax])
ezmeshc(funx,funy,funz,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')
ezmesh(axes_handle,...)
h = ezmeshc(...)

Description ezmeshc(fun) creates a graph of fun(x,y) using the meshc function.
fun is plotted over the default domain -2π < x < 2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see the Remarks section).

ezmeshc(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezmeshc(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezmeshc(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezmeshc(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezmeshc(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezmeshc(...,'circ') plots fun over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezmeshc(...) returns the handle to a surface object in h.

2-1034

ezmeshc

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the string expression you pass to ezmeshc. For example, the MATLAB
syntax for a mesh/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezmeshc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmeshc.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezmeshc('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezmeshc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmeshc(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezmeshc does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezmeshc(@(x,y)myfun(x,y,2))

2-1035

ezmeshc

Examples Create a mesh/contour graph of the expression

over the domain -5 < x < 5, -2*pi < y < 2*pi:

ezmeshc('y/(1 + x^2 + y^2)',[-5,5,-2*pi,2*pi])

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = -65.5 and elevation = 26)

See Also ezmesh, ezsurfc, function_handle, meshc

2-1036

ezmeshc

“Function Plots” on page 1-88 for related functions

2-1037

ezplot

Purpose Easy-to-use function plotter

Syntax ezplot(fun)
ezplot(fun,[min,max])
ezplot(fun2)
ezplot(fun2,[xmin,xmax,ymin,ymax])
ezplot(fun2,[min,max])
ezplot(funx,funy)
ezplot(funx,funy,[tmin,tmax])
ezplot(...,figure_handle)
ezplot(axes_handle,...)
h = ezplot(...)

Description ezplot(fun) plots the expression fun(x) over the default domain -2π <
x < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and Anonymous Functions) or a string
(see the Remarks section).

ezplot(fun,[min,max]) plots fun(x) over the domain: min < x < max.

For implicitly defined functions, fun2(x,y):

ezplot(fun2) plots fun2(x,y) = 0 over the default domain -2π < x <
2π, -2π < y < 2π.

ezplot(fun2,[xmin,xmax,ymin,ymax]) plots fun2(x,y) = 0 over
xmin < x < xmax and ymin < y < ymax.

ezplot(fun2,[min,max]) plots fun2(x,y) = 0 over min < x < max
and min < y < max.

ezplot(funx,funy) plots the parametrically defined planar curve
funx(t) and funy(t) over the default domain 0 < t < 2π.

2-1038

ezplot

ezplot(funx,funy,[tmin,tmax]) plots funx(t) and funy(t) over
tmin < t < tmax.

ezplot(...,figure_handle) plots the given function over the specified
domain in the figure window identified by the handle figure.

ezplot(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezplot(...) returns the handle to a line objects in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the expression you pass to ezplot. For example, the MATLAB syntax
for a plot of the expression

x.^2 - y.^2

which represents an implicitly defined function, is written as

ezplot('x^2 - y^2')

That is, x^2 is interpreted as x.^2 in the string you pass to ezplot.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezplot,

fh = @(x,y) sqrt(x.^2 + y.^2 - 1);
ezplot(fh)
axis equal

which plots a circle. Note that when using function handles, you must
use the array power, array multiplication, and array division operators
(.^, .*, ./) since ezplot does not alter the syntax, as in the case
with string inputs.

2-1039

ezplot

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezplot(@(x,y)myfun(x,y,2))

Examples This example plots the implicitly defined function

x2 - y4 = 0

over the domain [-2π, 2π]:

ezplot('x^2-y^4')

2-1040

ezplot

See Also ezplot3, ezpolar, function_handle, plot

“Function Plots” on page 1-88 for related functions

2-1041

ezplot3

Purpose Easy-to-use 3-D parametric curve plotter

Syntax ezplot3(funx,funy,funz)
ezplot3(funx,funy,funz,[tmin,tmax])
ezplot3(...,'animate')
ezplot3(axes_handle,...)
h = ezplot3(...)

Description ezplot3(funx,funy,funz) plots the spatial curve funx(t), funy(t),
and funz(t) over the default domain 0 < t < 2π.

funx, funy, and funz can be function handles for M-file functions or
an anonymous functions (see “Function Handles” and “Anonymous
Functions”) or strings (see the Remarks section).

ezplot3(funx,funy,funz,[tmin,tmax]) plots the curve funx(t),
funy(t), and funz(t) over the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial
curve.

ezplot3(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezplot3(...) returns the handle to the plotted objects in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the expression you pass to ezplot3. For example, the MATLAB syntax
for a plot of the expression

x = s./2, y = 2.*s, z = s.^2;

which represents a parametric function, is written as

ezplot3('s/2','2*s','s^2')

2-1042

ezplot3

That is, s/2 is interpreted as s./2 in the string you pass to ezplot3.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezplot3.

fh1 = @(s) s./2; fh2 = @(s) 2.*s; fh3 = @(s) s.^2;
ezplot3(fh1,fh2,fh3)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezplot does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfuntk:

function s = myfuntk(t,k)
s = t.^k.*sin(t);

then you can use an anonymous function to specify that parameter:

ezplot3(@cos,@(t)myfuntk(t,1),@sqrt)

Examples This example plots the parametric curve

over the domain [0,6π]:

ezplot3('sin(t)','cos(t)','t',[0,6*pi])

2-1043

ezplot3

See Also ezplot, ezpolar, function_handle, plot3

“Function Plots” on page 1-88 for related functions

2-1044

ezpolar

Purpose Easy-to-use polar coordinate plotter

Syntax ezpolar(fun)
ezpolar(fun,[a,b])
ezpolar(axes_handle,...)
h = ezpolar(...)

Description ezpolar(fun) plots the polar curve rho = fun(theta) over the default
domain 0 < theta < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Function Handles”) or a string
(see the Remarks section).

ezpolar(fun,[a,b]) plots fun for a < theta < b.

ezpolar(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezpolar(...) returns the handle to a line object in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the expression you pass to ezpolar. For example, the MATLAB syntax
for a plot of the expression

t.^2.*cos(t)

which represents an implicitly defined function, is written as

ezpolar('t^2*cos(t)')

That is, t^2 is interpreted as t.^2 in the string you pass to ezpolar.

2-1045

ezpolar

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezpolar.

fh = @(t) t.^2.*cos(t);
ezpolar(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezpolar does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k1 and k2 in
myfun:

function s = myfun(t,k1,k2)
s = sin(k1*t).*cos(k2*t);

then you can use an anonymous function to specify the parameters:

ezpolar(@(t)myfun(t,2,3))

Examples This example creates a polar plot of the function

1 + cos(t)

over the domain [0, 2π]:

ezpolar('1+cos(t)')

2-1046

ezpolar

See Also ezplot, ezplot3, function_handle, plot, plot3, polar

“Function Plots” on page 1-88 for related functions

2-1047

ezsurf

Purpose Easy-to-use 3-D colored surface plotter

Syntax ezsurf(fun)
ezsurf(fun,domain)
ezsurf(funx,funy,funz)
ezsurf(funx,funy,funz,[smin,smax,tmin,tmax])
ezsurf(funx,funy,funz,[min,max]
ezsurf(...,n)
ezsurf(...,'circ')
ezsurf(axes_handle,...)
h = ezsurf(...)

Description ezsurf(fun) creates a graph of fun(x,y) using the surf function. fun
is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see the Remarks section).

ezsurf(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezsurf(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurf(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezsurf(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezsurf(...,n) plots fun over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurf(...,'circ') plots fun over a disk centered on the domain.

ezsurf(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

2-1048

ezsurf

h = ezsurf(...) returns the handle to a surface object in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the expression you pass to ezmesh. For example, the MATLAB syntax
for a surface plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurf.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezsurf('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezsurf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezsurf does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k1,k2,k3)
z = x.*(y.^k1)./(x.^k2 + y.^k3);

2-1049

ezsurf

then you can use an anonymous function to specify that parameter:

ezsurf(@(x,y)myfun(x,y,2,2,4))

Examples ezsurf does not graph points where the mathematical function is not
defined (these data points are set to NaNs, which MATLAB does not plot).
This example illustrates this filtering of singularities/discontinuous
points by graphing the function

over the default domain -2π < x < 2π, -2π < y < 2π:

ezsurf('real(atan(x+i*y))')

2-1050

ezsurf

Using surf to plot the same data produces a graph without filtering of
discontinuities (as well as requiring more steps):

[x,y] = meshgrid(linspace(-2*pi,2*pi,60));
z = real(atan(x+i.*y));
surf(x,y,z)

Note also that ezsurf creates graphs that have axis labels, a title, and
extend to the axis limits.

See Also ezmesh, ezsurfc, function_handle, surf

“Function Plots” on page 1-88 for related functions

2-1051

ezsurfc

Purpose Easy-to-use combination surface/contour plotter

Syntax ezsurfc(fun)
ezsurfc(fun,domain)
ezsurfc(funx,funy,funz)
ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax])
ezsurfc(funx,funy,funz,[min,max]
ezsurfc(...,n)
ezsurfc(...,'circ')
ezsurfc(axes_handle,...)
h = ezsurfc(...)

Description ezsurfc(fun) creates a graph of fun(x,y) using the surfc function.
The function fun is plotted over the default domain: -2π < x < 2π, -2π <
y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see the Remarks section).

ezsurfc(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezsurfc(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezsurfc(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

2-1052

ezsurfc

ezsurfc(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezsurfc(...) returns the handles to the graphics objects in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the expression you pass to ezsurfc. For example, the MATLAB syntax
for a surface/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurfc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurfc.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezsurfc('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezsurfc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezsurfc does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k1,k2,k3)

2-1053

ezsurfc

z = x.*(y.^k1)./(x.^k2 + y.^k3);

then you can use an anonymous function to specify that parameter:

ezsurfc(@(x,y)myfun(x,y,2,2,4))

Examples Create a surface/contour plot of the expression

over the domain -5 < x < 5, -2*pi < y < 2*pi, with a computational grid
of size 35-by-35:

ezsurfc('y/(1 + x^2 + y^2)',[-5,5,-2*pi,2*pi],35)

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = -65.5 and elevation = 26).

2-1054

ezsurfc

See Also ezmesh, ezmeshc, ezsurf, function_handle, surfc

“Function Plots” on page 1-88 for related functions

2-1055

factor

Purpose Prime factors

Syntax f = factor(n)

Description f = factor(n) returns a row vector containing the prime factors of n.

Examples f = factor(123)
f =

3 41

See Also isprime, primes

2-1056

Index

Index& 2-48 2-50
’ 2-36
* 2-36
+ 2-36
- 2-36
/ 2-36
: 2-57
< 2-46
> 2-46
@ 2-1296
\ 2-36
^ 2-36
| 2-48 2-50
~ 2-48 2-50
&& 2-50
== 2-46
]) 2-56
|| 2-50
~= 2-46
1-norm 2-2207 2-2600
2-norm (estimate of) 2-2209

A
abs 2-59
absolute accuracy

BVP 2-420
DDE 2-806
ODE 2-2254

absolute value 2-59
Accelerator

Uimenu property 2-3395
accumarray 2-60
accuracy

of linear equation solution 2-607
of matrix inversion 2-607

acos 2-66
acosd 2-68
acosh 2-69
acot 2-71

acotd 2-73
acoth 2-74
acsc 2-76
acscd 2-78
acsch 2-79
activelegend 1-86 2-2429
actxcontrol 2-81
actxcontrollist 2-88
actxcontrolselect 2-89
actxserver 2-93
Adams-Bashforth-Moulton ODE solver 2-2242
addevent 2-97
addframe

AVI files 2-99
addition (arithmetic operator) 2-36
addOptional

inputParser object 2-101
addParamValue

inputParser object 2-104
addpath 2-107
addpref function 2-109
addproperty 2-110
addRequired

inputParser object 2-112
addressing selected array elements 2-57
addsample 2-114
addsampletocollection 2-116
addtodate 2-118
addts 2-119
adjacency graph 2-908
airy 2-121
Airy functions

relationship to modified Bessel
functions 2-121

align function 2-123
aligning scattered data

multi-dimensional 2-2195
two-dimensional 2-1427

ALim, Axes property 2-265
all 2-127

Index-1

Index

allchild function 2-129
allocation of storage (automatic) 2-3648
AlphaData

image property 2-1591
surface property 2-3097
surfaceplot property 2-3118

AlphaDataMapping
image property 2-1592
patch property 2-2336
surface property 2-3097
surfaceplot property 2-3118

AmbientLightColor, Axes property 2-266
AmbientStrength

Patch property 2-2337
Surface property 2-3098
surfaceplot property 2-3119

amd 2-135 2-1849
analytical partial derivatives (BVP) 2-421
analyzer

code 2-2129
and 2-140
and (M-file function equivalent for &) 2-49
AND, logical

bit-wise 2-382
angle 2-142
annotating graphs

deleting annotations 2-145
in plot edit mode 2-2430

annotationfunction 2-143
ans 2-186
anti-diagonal 2-1454
any 2-187
arccosecant 2-76
arccosine 2-66
arccotangent 2-71
arcsecant 2-218
arcsine 2-223
arctangent 2-232

four-quadrant 2-234
arguments, M-file

checking number of inputs 2-2186
checking number of outputs 2-2190
number of input 2-2188
number of output 2-2188
passing variable numbers of 2-3520

arithmetic operations, matrix and array
distinguished 2-36

arithmetic operators
reference 2-36

array
addressing selected elements of 2-57
displaying 2-891
left division (arithmetic operator) 2-38
maximum elements of 2-2061
mean elements of 2-2066
median elements of 2-2069
minimum elements of 2-2101
multiplication (arithmetic operator) 2-37
of all ones 2-2273
of all zeros 2-3648
of random numbers 2-2583 2-2588
power (arithmetic operator) 2-38
product of elements 2-2496
removing first n singleton dimensions

of 2-2826
removing singleton dimensions of 2-2917
reshaping 2-2680
right division (arithmetic operator) 2-37
shift circularly 2-528
shifting dimensions of 2-2826
size of 2-2840
sorting elements of 2-2854
structure 2-1380 2-2700 2-2813
sum of elements 2-3078
swapping dimensions of 2-1732 2-2405
transpose (arithmetic operator) 2-38

arrayfun 2-211
arrays

detecting empty 2-1745
editing 2-3616

Index-2

Index

maximum size of 2-605
opening 2-2274

arrays, structure
field names of 2-1096

arrowhead matrix 2-592
ASCII

delimited files
writing 2-904

ASCII data
converting sparse matrix after loading

from 2-2867
reading 2-900
reading from disk 2-1960
saving to disk 2-2736

ascii function 2-217
asec 2-218
asecd 2-220
asech 2-221
asin 2-223
asind 2-225
asinh 2-226
aspect ratio of axes 2-728 2-2369
assert 2-228
assignin 2-230
atan 2-232
atan2 2-234
atand 2-236
atanh 2-237
.au files

reading 2-250
writing 2-251

audio
saving in AVI format 2-252
signal conversion 2-1901 2-2169

audioplayer 1-81 2-239
audiorecorder 1-81 2-244
aufinfo 2-249
auread 2-250
AutoScale

quivergroup property 2-2560

AutoScaleFactor
quivergroup property 2-2560

autoselection of OpenGL 2-1133
auwrite 2-251
average of array elements 2-2066
average,running 2-1175
avi 2-252
avifile 2-252
aviinfo 2-256
aviread 2-258
axes 2-259

editing 2-2430
setting and querying data aspect ratio 2-728
setting and querying limits 2-3620
setting and querying plot box aspect

ratio 2-2369
Axes

creating 2-259
defining default properties 2-264
fixed-width font 2-282
property descriptions 2-265

axis 2-303
axis crossing. See zero of a function
azimuth (spherical coordinates) 2-2883
azimuth of viewpoint 2-3537

B
BackFaceLighting

Surface property 2-3098
surfaceplot property 2-3119

BackFaceLightingpatch property 2-2337
BackgroundColor

annotation textbox property 2-176
Text property 2-3199

BackGroundColor
Uicontrol property 2-3350

BackingStore, Figure property 2-1101
badly conditioned 2-2600
balance 2-309

Index-3

Index

BarLayout
barseries property 2-324

BarWidth
barseries property 2-324

base to decimal conversion 2-340
base two operations

conversion from decimal to binary 2-824
logarithm 2-1979
next power of two 2-2203

base2dec 2-340
BaseLine

barseries property 2-324
stem property 2-2963

BaseValue
areaseries property 2-196
barseries property 2-325
stem property 2-2963

beep 2-341
BeingDeleted

areaseries property 2-196
barseries property 2-325
contour property 2-632
errorbar property 2-974
group property 2-1102 2-1592 2-3200
hggroup property 2-1509
hgtransform property 2-1529
light property 2-1891
line property 2-1908
lineseries property 2-1921
quivergroup property 2-2560
rectangle property 2-2617
scatter property 2-2760
stairseries property 2-2930
stem property 2-2963
surface property 2-3099
surfaceplot property 2-3120
transform property 2-2337
Uipushtool property 2-3430
Uitoggletool property 2-3461
Uitoolbar property 2-3474

Bessel functions
first kind 2-349
modified, first kind 2-346
modified, second kind 2-352
second kind 2-355

Bessel functions, modified
relationship to Airy functions 2-121

Bessel’s equation
(defined) 2-349
modified (defined) 2-346

besseli 2-346
besselj 2-349
besselk 2-352
bessely 2-355
beta 2-359
beta function

(defined) 2-359
incomplete (defined) 2-361
natural logarithm 2-363

betainc 2-361
betaln 2-363
bicg 2-364
bicgstab 2-373
BiConjugate Gradients method 2-364
BiConjugate Gradients Stabilized method 2-373
big endian formats 2-1225
bin2dec 2-379
binary

data
writing to file 2-1308

files
reading 2-1259

mode for opened files 2-1224
binary data

reading from disk 2-1960
saving to disk 2-2736

binary function 2-380
binary to decimal conversion 2-379
bisection search 2-1318
bit depth

Index-4

Index

querying 2-1610
bit-wise operations

AND 2-382
get 2-385
OR 2-388
set bit 2-389
shift 2-390
XOR 2-392

bitand 2-382
bitcmp 2-383
bitget 2-385
bitmaps

writing 2-1634
bitmax 2-386
bitor 2-388
bitset 2-389
bitshift 2-390
bitxor 2-392
blanks 2-393

removing trailing 2-820
blkdiag 2-394
BMP files

writing 2-1634
bold font

TeX characters 2-3222
boundary value problems 2-427
box 2-395
Box, Axes property 2-267
braces, curly (special characters) 2-53
brackets (special characters) 2-53
break 2-396
breakpoints

listing 2-769
removing 2-757
resuming execution from 2-760
setting in M-files 2-773

brighten 2-397
browser

for help 2-1494
bsxfun 2-401

bubble plot (scatter function) 2-2755
Buckminster Fuller 2-3171
builtin 1-70 2-400
BusyAction

areaseries property 2-196
Axes property 2-267
barseries property 2-325
contour property 2-632
errorbar property 2-974
Figure property 2-1102
hggroup property 2-1509
hgtransform property 2-1529
Image property 2-1593
Light property 2-1891
Line property 2-1908 2-1921
patch property 2-2338
quivergroup property 2-2561
rectangle property 2-2617
Root property 2-2704
scatter property 2-2760
stairseries property 2-2930
stem property 2-2964
Surface property 2-3099
surfaceplot property 2-3120
Text property 2-3201
Uicontextmenu property 2-3335
Uicontrol property 2-3350
Uimenu property 2-3396
Uipushtool property 2-3430
Uitoggletool property 2-3462
Uitoolbar property 2-3474

ButtonDownFcn
area series property 2-197
Axes property 2-268
barseries property 2-326
contour property 2-633
errorbar property 2-975
Figure property 2-1103
hggroup property 2-1510
hgtransform property 2-1530

Index-5

Index

Image property 2-1593
Light property 2-1892
Line property 2-1909
lineseries property 2-1922
patch property 2-2338
quivergroup property 2-2561
rectangle property 2-2618
Root property 2-2704
scatter property 2-2761
stairseries property 2-2931
stem property 2-2964
Surface property 2-3100
surfaceplot property 2-3121
Text property 2-3201
Uicontrol property 2-3351

BVP solver properties
analytical partial derivatives 2-421
error tolerance 2-419
Jacobian matrix 2-421
mesh 2-424
singular BVPs 2-424
solution statistics 2-425
vectorization 2-420

bvp4c 2-403
bvpget 2-414
bvpinit 2-415
bvpset 2-418
bvpxtend 2-427

C
caching

MATLAB directory 2-2361
calendar 2-428
call history 2-2503
CallBack

Uicontextmenu property 2-3336
Uicontrol property 2-3352
Uimenu property 2-3397

CallbackObject, Root property 2-2704

calllib 2-429
callSoapService 2-431
camdolly 2-432
camera

dollying position 2-432
moving camera and target postions 2-432
placing a light at 2-436
positioning to view objects 2-438
rotating around camera target 1-98 2-440

2-442
rotating around viewing axis 2-446
setting and querying position 2-443
setting and querying projection type 2-445
setting and querying target 2-447
setting and querying up vector 2-449
setting and querying view angle 2-451

CameraPosition, Axes property 2-269
CameraPositionMode, Axes property 2-270
CameraTarget, Axes property 2-270
CameraTargetMode, Axes property 2-270
CameraUpVector, Axes property 2-270
CameraUpVectorMode, Axes property 2-271
CameraViewAngle, Axes property 2-271
CameraViewAngleMode, Axes property 2-271
camlight 2-436
camlookat 2-438
camorbit 2-440
campan 2-442
campos 2-443
camproj 2-445
camroll 2-446
camtarget 2-447
camup 2-449
camva 2-451
camzoom 2-453
CaptureMatrix, Root property 2-2704
CaptureRect, Root property 2-2705
cart2pol 2-454
cart2sph 2-455

Index-6

Index

Cartesian coordinates 2-454 to 2-455 2-2440
2-2883

case 2-456
in switch statement (defined) 2-3157
lower to upper 2-3508
upper to lower 2-1991

cast 2-458
cat 2-459
catch 2-461
caxis 2-462
Cayley-Hamilton theorem 2-2460
cd 2-467
cd (ftp) function 2-469
CData

Image property 2-1594
scatter property 2-2762
Surface property 2-3101
surfaceplot property 2-3121
Uicontrol property 2-3353
Uipushtool property 2-3431
Uitoggletool property 2-3462

CDataMapping
Image property 2-1596
patch property 2-2341
Surface property 2-3102
surfaceplot property 2-3122

CDataMode
surfaceplot property 2-3123

CDatapatch property 2-2339
CDataSource

scatter property 2-2762
surfaceplot property 2-3123

cdf2rdf 2-470
cdfepoch 2-472
cdfinfo 2-473
cdfread 2-477
cdfwrite 2-481
ceil 2-484
cell 2-485
cell array

conversion to from numeric array 2-2216
creating 2-485
structure of, displaying 2-498

cell2mat 2-487
cell2struct 2-489
celldisp 2-491
cellfun 2-492
cellplot 2-498
cgs 2-501
char 1-51 1-59 1-63 2-506
characters

conversion, in format specification
string 2-1246 2-2906

escape, in format specification string 2-1247
2-2906

check boxes 2-3343
Checked, Uimenu property 2-3397
checkerboard pattern (example) 2-2671
checkin 2-507

examples 2-508
options 2-507

checkout 2-510
examples 2-511
options 2-510

child functions 2-2498
Children

areaseries property 2-198
Axes property 2-273
barseries property 2-327
contour property 2-633
errorbar property 2-975
Figure property 2-1104
hggroup property 2-1510
hgtransform property 2-1530
Image property 2-1596
Light property 2-1892
Line property 2-1910
lineseries property 2-1922
patch property 2-2341
quivergroup property 2-2562

Index-7

Index

rectangle property 2-2619
Root property 2-2705
scatter property 2-2762
stairseries property 2-2932
stem property 2-2965
Surface property 2-3102
surfaceplot property 2-3124
Text property 2-3203
Uicontextmenu property 2-3336
Uicontrol property 2-3353
Uimenu property 2-3398
Uitoolbar property 2-3475

chol 2-513
Cholesky factorization 2-513

(as algorithm for solving linear
equations) 2-2125

lower triangular factor 2-2327
minimum degree ordering and

(sparse) 2-3170
preordering for 2-592

cholinc 2-517
cholupdate 2-525
circle

rectangle function 2-2612
circshift 2-528
cla 2-529
clabel 2-530
class 2-536
class, object. See object classes
classes

field names 2-1096
loaded 2-1659

clc 2-538 2-545
clear 2-539

serial port I/O 2-544
clearing

Command Window 2-538
items from workspace 2-539
Java import list 2-541

clf 2-545

ClickedCallback
Uipushtool property 2-3431
Uitoggletool property 2-3463

CLim, Axes property 2-273
CLimMode, Axes property 2-274
clipboard 2-546
Clipping

areaseries property 2-198
Axes property 2-274
barseries property 2-327
contour property 2-634
errrobar property 2-976
Figure property 2-1104
hggroup property 2-1511
hgtransform property 2-1531
Image property 2-1597
Light property 2-1892
Line property 2-1910
lineseries property 2-1923
quivergroup property 2-2562
rectangle property 2-2619
Root property 2-2705
scatter property 2-2763
stairseries property 2-2932
stem property 2-2965
Surface property 2-3102
surfaceplot property 2-3124
Text property 2-3203
Uicontrol property 2-3353

Clippingpatch property 2-2341
clock 2-547
close 2-548

AVI files 2-550
close (ftp) function 2-551
CloseRequestFcn, Figure property 2-1104
closest point search 2-924
closest triangle search 2-3298
closing

files 2-1059
MATLAB 2-2551

Index-8

Index

cmapeditor 2-572
cmopts 2-553
code

analyzer 2-2129
colamd 2-555
colmmd 2-559
colon operator 2-57
Color

annotation arrow property 2-147
annotation doublearrow property 2-151
annotation line property 2-159
annotation textbox property 2-176
Axes property 2-274
errorbar property 2-976
Figure property 2-1107
Light property 2-1892
Line property 2-1911
lineseries property 2-1923
quivergroup property 2-2562
stairseries property 2-2932
stem property 2-2966
Text property 2-3203
textarrow property 2-165

color of fonts, see also FontColor property 2-3222
colorbar 2-561
colormap 2-567

editor 2-572
Colormap, Figure property 2-1107
colormaps

converting from RGB to HSV 1-97 2-2690
plotting RGB components 1-97 2-2691

ColorOrder, Axes property 2-274
ColorSpec 2-590
colperm 2-592
COM

object methods
actxcontrol 2-81
actxcontrollist 2-88
actxcontrolselect 2-89
actxserver 2-93
addproperty 2-110
delete 2-850
deleteproperty 2-856
eventlisteners 2-1002
events 2-1004
get 1-111 2-1363
inspect 2-1675
invoke 2-1729
iscom 2-1743
isevent 2-1753
isinterface 2-1765
ismethod 2-1774
isprop 2-1795
load 2-1965
move 2-2150
propedit 2-2506
registerevent 2-2660
release 2-2665
save 2-2744
send 2-2789
set 1-112 2-2799
unregisterallevents 2-3492
unregisterevent 2-3495

server methods
Execute 2-1006
Feval 2-1068

combinations of n elements 2-2194
combs 2-2194
comet 2-594
comet3 2-596
comma (special characters) 2-55
command syntax 2-1490 2-3176
Command Window

clearing 2-538
cursor position 1-4 2-1550

Index-9

Index

get width 2-599
commandhistory 2-598
commands

help for 2-1489 2-1499
system 1-4 1-11 2-3179
UNIX 2-3488

commandwindow 2-599
comments

block of 2-55
common elements. See set operations,

intersection
compan 2-600
companion matrix 2-600
compass 2-601
complementary error function

(defined) 2-965
scaled (defined) 2-965

complete elliptic integral
(defined) 2-949
modulus of 2-947 2-949

complex 2-603 2-1583
exponential (defined) 2-1014
logarithm 2-1976 to 2-1977
numbers 2-1559
numbers, sorting 2-2854 2-2858
phase angle 2-142
sine 2-2834
unitary matrix 2-2530
See also imaginary

complex conjugate 2-617
sorting pairs of 2-691

complex data
creating 2-603

complex numbers, magnitude 2-59
complex Schur form 2-2776
compression

lossy 2-1638
computer 2-605
computer MATLAB is running on 2-605
concatenation

of arrays 2-459
cond 2-607
condeig 2-608
condest 2-609
condition number of matrix 2-607 2-2600

improving 2-309
coneplot 2-611
conj 2-617
conjugate, complex 2-617

sorting pairs of 2-691
connecting to FTP server 2-1288
contents.m file 2-1490
context menu 2-3332
continuation (..., special characters) 2-55
continue 2-618
continued fraction expansion 2-2594
contour

and mesh plot 2-1034
filled plot 2-1026
functions 2-1022
of mathematical expression 2-1023
with surface plot 2-1052

contour3 2-624
contourc 2-627
contourf 2-629
ContourMatrix

contour property 2-634
contours

in slice planes 2-651
contourslice 2-651
contrast 2-655
conv 2-656
conv2 2-658
conversion

base to decimal 2-340
binary to decimal 2-379
Cartesian to cylindrical 2-454
Cartesian to polar 2-454
complex diagonal to real block diagonal 2-470
cylindrical to Cartesian 2-2440

Index-10

Index

decimal number to base 2-817 2-823
decimal to binary 2-824
decimal to hexadecimal 2-825
full to sparse 2-2864
hexadecimal to decimal 2-1503
integer to string 2-1689
lowercase to uppercase 2-3508
matrix to string 2-2031
numeric array to cell array 2-2216
numeric array to logical array 2-1980
numeric array to string 2-2218
partial fraction expansion to

pole-residue 2-2682
polar to Cartesian 2-2440
pole-residue to partial fraction

expansion 2-2682
real to complex Schur form 2-2733
spherical to Cartesian 2-2883
string matrix to cell array 2-500
string to numeric array 2-2987
uppercase to lowercase 2-1991
vector to character string 2-506

conversion characters in format specification
string 2-1246 2-2906

convex hulls
multidimensional vizualization 2-667
two-dimensional visualization 2-664

convhull 2-664
convhulln 2-667
convn 2-670
convolution 2-656

inverse. See deconvolution
two-dimensional 2-658

coordinate system and viewpoint 2-3537
coordinates

Cartesian 2-454 to 2-455 2-2440 2-2883
cylindrical 2-454 to 2-455 2-2440
polar 2-454 to 2-455 2-2440
spherical 2-2883

coordinates. 2-454

See also conversion
copyfile 2-671
copyobj 2-674
corrcoef 2-676
cos 2-679
cosd 2-681
cosecant

hyperbolic 2-702
inverse 2-76
inverse hyperbolic 2-79

cosh 2-682
cosine 2-679

hyperbolic 2-682
inverse 2-66
inverse hyperbolic 2-69

cot 2-684
cotangent 2-684

hyperbolic 2-687
inverse 2-71
inverse hyperbolic 2-74

cotd 2-686
coth 2-687
cov 2-689
cplxpair 2-691
cputime 2-692
createClassFromWsdl 2-693
createcopy

inputParser object 2-695
CreateFcn

areaseries property 2-198
Axes property 2-275
barseries property 2-327
contour property 2-635
errorbar property 2-976
Figure property 2-1108
group property 2-1531
hggroup property 2-1511
Image property 2-1597
Light property 2-1893
Line property 2-1911

Index-11

Index

lineseries property 2-1923
patch property 2-2341
quivergroup property 2-2563
rectangle property 2-2619
Root property 2-2705
scatter property 2-2763
stairseries property 2-2932
stemseries property 2-2966
Surface property 2-3103
surfaceplot property 2-3124
Text property 2-3203
Uicontextmenu property 2-3336
Uicontrol property 2-3353
Uimenu property 2-3398
Uipushtool property 2-3432
Uitoggletool property 2-3463
Uitoolbar property 2-3475

createSoapMessage 2-697
creating your own MATLAB functions 2-1294
cross 2-698
cross product 2-698
csc 2-699
cscd 2-701
csch 2-702
csvread 2-704
csvwrite 2-707
ctranspose (M-file function equivalent for

\q) 2-42
ctranspose (timeseries) 2-709
cubic interpolation 2-1705 2-1708 2-1711 2-2379

piecewise Hermite 2-1695
cubic spline interpolation

one-dimensional 2-1695 2-1705 2-1708
2-1711

cumprod 2-711
cumsum 2-713
cumtrapz 2-714
cumulative

product 2-711
sum 2-713

curl 2-716
curly braces (special characters) 2-53
current directory 2-2523

changing 2-467
CurrentAxes 2-1109
CurrentAxes, Figure property 2-1109
CurrentCharacter, Figure property 2-1109
CurrentFigure, Root property 2-2705
CurrentMenu, Figure property (obsolete) 2-1109
CurrentObject, Figure property 2-1110
CurrentPoint

Axes property 2-276
Figure property 2-1110

cursor images
reading 2-1622

cursor position 1-4 2-1550
Curvature, rectangle property 2-2620
curve fitting (polynomial) 2-2452
customverctrl 2-719
Cuthill-McKee ordering, reverse 2-3160 2-3171
cylinder 2-720
cylindrical coordinates 2-454 to 2-455 2-2440

D
daqread 2-723
daspect 2-728
data

ASCII
reading from disk 2-1960

ASCII, saving to disk 2-2736
binary

writing to file 2-1308
binary, saving to disk 2-2736
computing 2-D stream lines 1-101 2-2994
computing 3-D stream lines 1-101 2-2996
formatted

reading from files 2-1275
writing to file 2-1245

formatting 2-1245 2-2904

Index-12

Index

isosurface from volume data 2-1788
reading binary from disk 2-1960
reading from files 2-3228
reducing number of elements in 1-101 2-2635
smoothing 3-D 1-101 2-2852
writing to strings 2-2904

data aspect ratio of axes 2-728
data types

complex 2-603
data, aligning scattered

multi-dimensional 2-2195
two-dimensional 2-1427

data, ASCII
converting sparse matrix after loading

from 2-2867
DataAspectRatio, Axes property 2-278
DataAspectRatioMode, Axes property 2-281
datatipinfo 2-736
date 2-737
date and time functions 2-960
date string

format of 2-742
date vector 2-754
datenum 2-738
datestr 2-742
datevec 2-753
dbclear 2-757
dbcont 2-760
dbdown 2-761
dblquad 2-762
dbmex 2-764
dbquit 2-765
dbstack 2-767
dbstatus 2-769
dbstep 2-771
dbstop 2-773
dbtype 2-783
dbup 2-784
DDE solver properties

error tolerance 2-805

event location 2-811
solver output 2-807
step size 2-809

dde23 2-785
ddeadv 1-112 2-790
ddeexec 2-792
ddeget 2-793
ddeinit 1-112 2-794
ddephas2 output function 2-808
ddephas3 output function 2-808
ddeplot output function 2-808
ddepoke 2-795
ddeprint output function 2-808
ddereq 2-797
ddesd 2-799
ddeset 2-804
ddeterm 2-815
ddeunadv 2-816
deal 2-817
deblank 2-820
debugging

changing workspace context 2-761
changing workspace to calling M-file 2-784
displaying function call stack 2-767
M-files 2-1836 2-2498
MEX-files on UNIX 2-764
removing breakpoints 2-757
resuming execution from breakpoint 2-771
setting breakpoints in 2-773
stepping through lines 2-771

dec2base 2-817 2-823
dec2bin 2-824
dec2hex 2-825
decic function 2-826
decimal number to base conversion 2-817 2-823
decimal point (.)

(special characters) 2-54
to distinguish matrix and array

operations 2-36
decomposition

Index-13

Index

Dulmage-Mendelsohn 2-908
"economy-size" 2-2530 2-3149
orthogonal-triangular (QR) 2-2530
Schur 2-2776
singular value 2-2593 2-3149

deconv 2-828
deconvolution 2-828
definite integral 2-2542
del operator 2-829
del2 2-829
delaunay 2-832
Delaunay tessellation

3-dimensional vizualization 2-839
multidimensional vizualization 2-843

Delaunay triangulation
vizualization 2-832

delaunay3 2-839
delaunayn 2-843
delete 2-848 2-850

serial port I/O 2-853
timer object 2-855

delete (ftp) function 2-852
DeleteFcn

areaseries property 2-199
Axes property 2-281
barseries property 2-328
contour property 2-635
errorbar property 2-976
Figure property 2-1112
hggroup property 2-1512
hgtransform property 2-1532
Image property 2-1597
Light property 2-1894
lineseries property 2-1924
quivergroup property 2-2563
Root property 2-2706
scatter property 2-2764
stairseries property 2-2933
stem property 2-2967
Surface property 2-3103

surfaceplot property 2-3125
Text property 2-3204 2-3206
Uicontextmenu property 2-3337 2-3354
Uimenu property 2-3399
Uipushtool property 2-3433
Uitoggletool property 2-3464
Uitoolbar property 2-3476

DeleteFcn, line property 2-1912
DeleteFcn, rectangle property 2-2621
DeleteFcnpatch property 2-2342
deleteproperty 2-856
deleting

files 2-848
items from workspace 2-539

delevent 2-858
delimiters in ASCII files 2-900 2-904
delsample 2-859
delsamplefromcollection 2-860
demo 2-861
demos

in Command Window 2-927
density

of sparse matrix 2-2204
depdir 2-866
dependence, linear 2-3070
dependent functions 2-2498
depfun 2-867
derivative

approximate 2-882
polynomial 2-2449

det 2-871
detecting

alphabetic characters 2-1769
empty arrays 2-1745
global variables 2-1759
logical arrays 2-1770
members of a set 2-1772
objects of a given class 2-1737
positive, negative, and zero array

elements 2-2833

Index-14

Index

sparse matrix 2-1804
determinant of a matrix 2-871
detrend 2-872
detrend (timeseries) 2-874
deval 2-875
diag 2-877
diagonal 2-877

anti- 2-1454
k-th (illustration) 2-3283
main 2-877
sparse 2-2869

dialog 2-879
dialog box

error 2-990
help 2-1497
input 2-1664
list 2-1955
message 2-2163
print 1-91 1-103 2-2487
question 1-103 2-2549
warning 2-3561

diary 2-880
Diary, Root property 2-2706
DiaryFile, Root property 2-2706
diff 2-882
differences

between adjacent array elements 2-882
between sets 2-2811

differential equation solvers
defining an ODE problem 2-2245
ODE boundary value problems 2-403

adjusting parameters 2-418
extracting properties 2-414
extracting properties of 2-994 to 2-995

2-3280 to 2-3281
forming initial guess 2-415

ODE initial value problems 2-2231
adjusting parameters of 2-2252
extracting properties of 2-2251

parabolic-elliptic PDE problems 2-2387

diffuse 2-884
DiffuseStrength

Surface property 2-3104
surfaceplot property 2-3125

DiffuseStrengthpatch property 2-2343
digamma function 2-2508
dimension statement (lack of in

MATLAB) 2-3648
dimensions

size of 2-2840
Diophantine equations 2-1348
dir 2-885
dir (ftp) function 2-888
direct term of a partial fraction expansion 2-2682
directories 2-467

adding to search path 2-107
checking existence of 2-1009
copying 2-671
creating 2-2112
listing contents of 2-885
listing MATLAB files in 2-3587
listing, on UNIX 2-1992
MATLAB

caching 2-2361
removing 2-2696
removing from search path 2-2701
See also directory, search path

directory 2-885
changing on FTP server 2-469
listing for FTP server 2-888
making on FTP server 2-2115
MATLAB location 2-2042
root 2-2042
temporary system 2-3187
See also directories

directory, changing 2-467
directory, current 2-2523
disconnect 2-551
discontinuities, eliminating (in arrays of phase

angles) 2-3504

Index-15

Index

discontinuities, plotting functions with 2-1050
discontinuous problems 2-1222
disp 2-891

memmapfile object 2-2072
serial port I/O 2-893
timer object 2-894

display 2-896
display format 2-1232
displaying output in Command Window 2-2148
DisplayName

areaseries property 2-199
barseries property 2-328
contour property 2-636
errorbar property 2-977
lineseries property 2-1924
quivergroup property 2-2564
scatter property 2-2764
stairseries property 2-2934
stem property 2-2967

distribution
Gaussian 2-965

Dithermap 2-1113
DithermapMode, Figure property 2-1113
division

array, left (arithmetic operator) 2-38
array, right (arithmetic operator) 2-37
by zero 2-1652
matrix, left (arithmetic operator) 2-37
matrix, right (arithmetic operator) 2-37
of polynomials 2-828

divisor
greatest common 2-1348

dll libraries

MATLAB functions
calllib 2-429
libfunctions 2-1874
libfunctionsview 2-1876
libisloaded 2-1878
libpointer 2-1880
libstruct 2-1882
loadlibrary 2-1968
unloadlibrary 2-3490

dlmread 2-900
dlmwrite 2-904
dmperm 2-908
Dockable, Figure property 2-1113
docsearch 2-913
documentation

displaying online 2-1494
dolly camera 2-432
dos 2-915

UNC pathname error 2-916
dot 2-917
dot product 2-698 2-917
dot-parentheses (special characters 2-55
double 1-58 2-918
double click, detecting 2-1136
double integral

numerical evaluation 2-762
DoubleBuffer, Figure property 2-1113
downloading files from FTP server 2-2100
dragrect 2-919
drawing shapes

circles and rectangles 2-2612
DrawMode, Axes property 2-281
drawnow 2-921
dsearch 2-923
dsearchn 2-924
Dulmage-Mendelsohn decomposition 2-908
dynamic fields 2-55

Index-16

Index

E
echo 2-925
Echo, Root property 2-2706
echodemo 2-927
edge finding, Sobel technique 2-660
EdgeAlpha

patch property 2-2343
surface property 2-3104
surfaceplot property 2-3126

EdgeColor
annotation ellipse property 2-156
annotation rectangle property 2-162
annotation textbox property 2-176
areaseries property 2-200
barseries property 2-329
patch property 2-2343
Surface property 2-3105
surfaceplot property 2-3126
Text property 2-3205

EdgeColor, rectangle property 2-2622
EdgeLighting

patch property 2-2344
Surface property 2-3106
surfaceplot property 2-3127

editable text 2-3343
editing

M-files 2-929
eig 2-931
eigensystem

transforming 2-470
eigenvalue

accuracy of 2-931
complex 2-470
matrix logarithm and 2-1985
modern approach to computation of 2-2445
of companion matrix 2-600
problem 2-932 2-2450
problem, generalized 2-932 2-2450
problem, polynomial 2-2450
repeated 2-933

Wilkinson test matrix and 2-3607
eigenvalues

effect of roundoff error 2-309
improving accuracy 2-309

eigenvector
left 2-932
matrix, generalized 2-2580
right 2-932

eigs 2-937
elevation (spherical coordinates) 2-2883
elevation of viewpoint 2-3537
ellipj 2-947
ellipke 2-949
ellipsoid 1-89 2-951
elliptic functions, Jacobian

(defined) 2-947
elliptic integral

complete (defined) 2-949
modulus of 2-947 2-949

else 2-953
elseif 2-954
Enable

Uicontrol property 2-3355
Uimenu property 2-3400
Uipushtool property 2-3433
Uitogglehtool property 2-3465

end 2-958
end caps for isosurfaces 2-1778
end of line, indicating 2-55
end-of-file indicator 2-1064
eomday 2-960
eps 2-961
eq 2-963
equal arrays

detecting 2-1748 2-1751
equal sign (special characters) 2-54
equations, linear

accuracy of solution 2-607
EraseMode

areaseries property 2-200

Index-17

Index

barseries property 2-329
contour property 2-636
errorbar property 2-977
hggroup property 2-1512
hgtransform property 2-1532
Image property 2-1598
Line property 2-1913
lineseries property 2-1924
quivergroup property 2-2564
rectangle property 2-2622
scatter property 2-2764
stairseries property 2-2934
stem property 2-2967
Surface property 2-3106
surfaceplot property 2-3127
Text property 2-3207

EraseModepatch property 2-2345
error 2-967

roundoff. See roundoff error
error function

complementary 2-965
(defined) 2-965
scaled complementary 2-965

error message
displaying 2-967
Index into matrix is negative or zero 2-1981
retrieving last generated 2-1839 2-1846

error messages
Out of memory 2-2308

error tolerance
BVP problems 2-419
DDE problems 2-805
ODE problems 2-2253

errorbars 2-971
errordlg 2-990
ErrorMessage, Root property 2-2706
errors

in file input/output 2-1065
ErrorType, Root property 2-2707

escape characters in format specification
string 2-1247 2-2906

etime 2-993
etree 2-994
etreeplot 2-995
eval 2-996
evalc 2-999
evalin 2-1000
event location (DDE) 2-811
event location (ODE) 2-2260
eventlisteners 2-1002
events 2-1004
examples

calculating isosurface normals 2-1785
contouring mathematical expressions 2-1023
isosurface end caps 2-1778
isosurfaces 2-1789
mesh plot of mathematical function 2-1032
mesh/contour plot 2-1036
plotting filled contours 2-1027
plotting function of two variables 2-1040
plotting parametric curves 2-1043
polar plot of function 2-1046
reducing number of patch faces 2-2632
reducing volume data 2-2635
subsampling volume data 2-3075
surface plot of mathematical function 2-1050
surface/contour plot 2-1054

Excel spreadsheets
loading 2-3625

exclamation point (special characters) 2-56
Execute 2-1006
executing statements repeatedly 2-1230 2-3594
execution

improving speed of by setting aside
storage 2-3648

pausing M-file 2-2367
resuming from breakpoint 2-760
time for M-files 2-2498

exifread 2-1008

Index-18

Index

exist 2-1009
exit 2-1013
exp 2-1014
expint 2-1015
expm 2-1016
expm1 2-1018
exponential 2-1014

complex (defined) 2-1014
integral 2-1015
matrix 2-1016

exponentiation
array (arithmetic operator) 2-38
matrix (arithmetic operator) 2-38

export2wsdlg 2-1019
extension, filename

.m 2-1294

.mat 2-2736
Extent

Text property 2-3208
Uicontrol property 2-3356

eye 2-1021
ezcontour 2-1022
ezcontourf 2-1026
ezmesh 2-1030
ezmeshc 2-1034
ezplot 2-1038
ezplot3 2-1042
ezpolar 2-1045
ezsurf 2-1048
ezsurfc 2-1052

F
F-norm 2-2207
FaceAlpha

annotation textbox property 2-177
FaceAlphapatch property 2-2346
FaceAlphasurface property 2-3108
FaceAlphasurfaceplot property 2-3129
FaceColor

annotation ellipse property 2-156
annotation rectangle property 2-162
areaseries property 2-201
barseries property 2-330
Surface property 2-3108
surfaceplot property 2-3129

FaceColor, rectangle property 2-2623
FaceColorpatch property 2-2346
FaceLighting

Surface property 2-3109
surfaceplot property 2-3130

FaceLightingpatch property 2-2347
faces, reducing number in patches 1-101 2-2631
Faces,patch property 2-2347
FaceVertexAlphaData, patch property 2-2348
FaceVertexCData,patch property 2-2349
factor 2-1056
factorial 2-1057
factorization 2-2530

LU 2-2008
QZ 2-2451 2-2580
See also decomposition

factorization, Cholesky 2-513
(as algorithm for solving linear

equations) 2-2125
minimum degree ordering and

(sparse) 2-3170
preordering for 2-592

factors, prime 2-1056
false 2-1058
fclose 2-1059

serial port I/O 2-1060
feather 2-1062
feof 2-1064
ferror 2-1065
feval 2-1066
Feval 2-1068
fft 2-1073
FFT. See Fourier transform
fft2 2-1078

Index-19

Index

fftn 2-1079
fftshift 2-1081
fftw 2-1083
FFTW 2-1076
fgetl 2-1088

serial port I/O 2-1089
fgets 2-1092

serial port I/O 2-1093
field names of a structure, obtaining 2-1096
fieldnames 2-1096
fields, noncontiguous, inserting data into 2-1308
fields, of structures

dynamic 2-55
fig files

annotating for printing 2-1256
figure 2-1098
Figure

creating 2-1098
defining default properties 2-1100
properties 2-1101
redrawing 1-95 2-2638

figure windows, displaying 2-1188
figurepalette 1-86 2-1153
figures

annotating 2-2430
opening 2-2274
saving 2-2747

Figures
updating from M-file 2-921

file
extension, getting 2-1165
modification date 2-885
position indicator

finding 2-1287
setting 2-1285
setting to start of file 2-1274

file formats
getting list of supported formats 2-1612
reading 2-723 2-1620
writing 2-1633

file size
querying 2-1610

fileattrib 2-1155
filebrowser 2-1161
filehandle 2-1166
filemarker 2-1164
filename

building from parts 2-1291
parts 2-1165
temporary 2-3188

filename extension
.m 2-1294
.mat 2-2736

fileparts 2-1165
files 2-1059

ASCII delimited
reading 2-900
writing 2-904

beginning of, rewinding to 2-1274 2-1617
checking existence of 2-1009
closing 2-1059
contents, listing 2-3306
copying 2-671
deleting 2-848
deleting on FTP server 2-852
end of, testing for 2-1064
errors in input or output 2-1065
Excel spreadsheets

loading 2-3625
fig 2-2747
figure, saving 2-2747
finding position within 2-1287
getting next line 2-1088
getting next line (with line

terminator) 2-1092
listing

in directory 2-3587
names in a directory 2-885

listing contents of 2-3306
locating 2-3591

Index-20

Index

mdl 2-2747
mode when opened 2-1224
model, saving 2-2747
opening 2-1225 2-2274

in Web browser 1-5 1-8 2-3581
opening in Windows applications 2-3608
path, getting 2-1165
pathname for 2-3591
reading

binary 2-1259
data from 2-3228
formatted 2-1275

reading data from 2-723
reading image data from 2-1620
rewinding to beginning of 2-1274 2-1617
setting position within 2-1285
size, determining 2-887
sound

reading 2-250 2-3575
writing 2-251 to 2-252 2-3580

startup 2-2040
version, getting 2-1165
.wav

reading 2-3575
writing 2-3580

WK1
loading 2-3612
writing to 2-3614

writing binary data to 2-1308
writing formatted data to 2-1245
writing image data to 2-1633
See also file

filesep 2-1167
fill 2-1168
Fill

contour property 2-637
fill3 2-1171
filter 2-1174

digital 2-1174
finite impulse response (FIR) 2-1174

infinite impulse response (IIR) 2-1174
two-dimensional 2-658

filter (timeseries) 2-1177
filter2 2-1180
find 2-1182
findall function 2-1187
findfigs 2-1188
finding 2-1182

sign of array elements 2-2833
zero of a function 2-1314
See also detecting

findobj 2-1189
findstr 2-1192
finish 2-1193
finish.m 2-2551
FIR filter 2-1174
FitheightToText

annotation textbox property 2-177
fitsinfo 2-1194
fitsread 2-1203
fix 2-1205
fixed-width font

axes 2-282
text 2-3209
uicontrols 2-3357

FixedColors, Figure property 2-1114
FixedWidthFontName, Root property 2-2707
flints 2-2169
flipdim 2-1206
fliplr 2-1207
flipud 2-1208
floating-point

integer, maximum 2-386
floating-point arithmetic, IEEE

smallest postive number 2-2607
floor 2-1210
flops 2-1211
flow control

break 2-396
case 2-456

Index-21

Index

end 2-958
error 2-968
for 2-1230
keyboard 2-1836
otherwise 2-2307
return 2-2689
switch 2-3157
while 2-3594

fminbnd 2-1213
fminsearch 2-1218
font

fixed-width, axes 2-282
fixed-width, text 2-3209
fixed-width, uicontrols 2-3357

FontAngle
annotation textbox property 2-179
Axes property 2-282
Text property 2-166 2-3209
Uicontrol property 2-3356

FontName
annotation textbox property 2-179
Axes property 2-282
Text property 2-3209
textarrow property 2-166
Uicontrol property 2-3357

fonts
bold 2-166 2-179 2-3210
italic 2-166 2-179 2-3209
specifying size 2-3209
TeX characters

bold 2-3222
italics 2-3222
specifying family 2-3222
specifying size 2-3222

units 2-166 2-179 2-3210
FontSize

annotation textbox property 2-179
Axes property 2-283
Text property 2-3209
textarrow property 2-166

Uicontrol property 2-3357
FontUnits

Axes property 2-283
Text property 2-3210
Uicontrol property 2-3358

FontWeight
annotation textbox property 2-179
Axes property 2-284
Text property 2-3210
textarrow property 2-166
Uicontrol property 2-3358

fopen 2-1223
serial port I/O 2-1228

for 2-1230
ForegroundColor

Uicontrol property 2-3358
Uimenu property 2-3400

format 2-1232
precision when writing 2-1259
reading files 2-1276
specification string, matching file data

to 2-2921
Format 2-2707
formats

big endian 2-1225
little endian 2-1225

FormatSpacing, Root property 2-2708
formatted data

reading from file 2-1275
writing to file 2-1245

formatting data 2-2904
Fourier transform

algorithm, optimal performance of 2-1076
2-1569 2-1571 2-2203

as method of interpolation 2-1710
convolution theorem and 2-656
discrete, n-dimensional 2-1079
discrete, one-dimensional 2-1073
discrete, two-dimensional 2-1078
fast 2-1073

Index-22

Index

inverse, n-dimensional 2-1573
inverse, one-dimensional 2-1569
inverse, two-dimensional 2-1571
shifting the zero-frequency component

of 2-1082
fplot 2-1240 2-1255
fprintf 2-1245

displaying hyperlinks with 2-1250
serial port I/O 2-1252

fraction, continued 2-2594
fragmented memory 2-2308
frame2im 2-1255
frames 2-3343
frames for printing 2-1256
fread 2-1259

serial port I/O 2-1269
freqspace 2-1273
frequency response

desired response matrix
frequency spacing 2-1273

frequency vector 2-1988
frewind 2-1274
fscanf 2-1275

serial port I/O 2-1281
fseek 2-1285
ftell 2-1287
FTP

connecting to server 2-1288
ftp function 2-1288
full 2-1290
fullfile 2-1291
func2str 2-1292
function 2-1294
function handle 2-1296
function handles

overview of 2-1296
function syntax 2-1490 2-3176
functions 2-1299

call history 2-2503
call stack for 2-767

checking existence of 2-1009
clearing from workspace 2-539
finding using keywords 2-1989
help for 2-1489 2-1499
in memory 2-1659
locating 2-3591
pathname for 2-3591
that work down the first non-singleton

dimension 2-2826
funm 2-1303
fwrite 2-1308

serial port I/O 2-1310
fzero 2-1314

G
gallery 2-1320
gamma function

(defined) 2-1343
incomplete 2-1343
logarithm of 2-1343
logarithmic derivative 2-2508

Gaussian distribution function 2-965
Gaussian elimination

(as algorithm for solving linear
equations) 2-1725 2-2126

Gauss Jordan elimination with partial
pivoting 2-2731

LU factorization 2-2008
gca 2-1345
gcbf function 2-1346
gcbo function 2-1347
gcd 2-1348
gcf 2-1350
gco 2-1351
ge 2-1352
generalized eigenvalue problem 2-932 2-2450
generating a sequence of matrix names (M1

through M12) 2-997
genpath 2-1354

Index-23

Index

genvarname 2-1356
geodesic dome 2-3171
get 1-111 2-1360 2-1363

memmapfile object 2-2073
serial port I/O 2-1365
timer object 2-1367

get (timeseries) 2-1369
get (tscollection) 2-1370
getabstime (timeseries) 2-1371
getabstime (tscollection) 2-1373
getappdata function 2-1375
getdatasamplesize 2-1378
getenv 2-1379
getfield 2-1380
getframe 2-1382

image resolution and 2-1383
getinterpmethod 2-1388
getpixelposition 2-1389
getpref function 2-1391
getqualitydesc 2-1393
getsampleusingtime (timeseries) 2-1394
getsampleusingtime (tscollection) 2-1395
gettimeseriesnames 2-1396
gettsafteratevent 2-1397
gettsafterevent 2-1398
gettsatevent 2-1399
gettsbeforeatevent 2-1400
gettsbeforeevent 2-1401
gettsbetweenevents 2-1402
GIF files

writing 2-1634
ginput function 2-1407
global 2-1409
global variable

defining 2-1409
global variables, clearing from workspace 2-539
gmres 2-1411
golden section search 2-1216
Goup

defining default properties 2-1527

gplot 2-1417
grabcode function 2-1419
gradient 2-1421
gradient, numerical 2-1421
graph

adjacency 2-908
graphics objects

Axes 2-259
Figure 2-1098
getting properties 2-1360
Image 2-1584
Light 2-1889
Line 2-1902
Patch 2-2328
resetting properties 1-99 2-2679
Root 1-93 2-2703
setting properties 1-93 1-95 2-2795
Surface 1-93 1-96 2-3092
Text 1-93 2-3194
uicontextmenu 2-3332
Uicontrol 2-3342
Uimenu 1-106 2-3392

graphics objects, deleting 2-848
graphs

editing 2-2430
graymon 2-1424
greatest common divisor 2-1348
Greek letters and mathematical symbols 2-170

2-182 2-3220
grid 2-1425

aligning data to a 2-1427
grid arrays

for volumetric plots 2-2090
multi-dimensional 2-2195

griddata 2-1427
griddata3 2-1431
griddatan 2-1434
GridLineStyle, Axes property 2-284
group

hggroup function 2-1506

Index-24

Index

gsvd 2-1437
gt 2-1443
gtext 2-1445
guidata function 2-1446
guihandles function 2-1449
GUIs, printing 2-2482
gunzip 2-1450 2-1452

H
H1 line 2-1491 to 2-1492
hadamard 2-1453
Hadamard matrix 2-1453

subspaces of 2-3070
handle graphics

hgtransform 2-1523
handle graphicshggroup 2-1506
HandleVisibility

areaseries property 2-202
Axes property 2-284
barseries property 2-331
contour property 2-638
errorbar property 2-978
Figure property 2-1114
hggroup property 2-1514
hgtransform property 2-1534
Image property 2-1599
Light property 2-1894
Line property 2-1914
lineseries property 2-1926
patch property 2-2351
quivergroup property 2-2565
rectangle property 2-2623
Root property 2-2708
stairseries property 2-2935
stem property 2-2969
Surface property 2-3109
surfaceplot property 2-3131
Text property 2-3210
Uicontextmenu property 2-3338

Uicontrol property 2-3358
Uimenu property 2-3400
Uipushtool property 2-3434
Uitoggletool property 2-3465
Uitoolbar property 2-3477

hankel 2-1454
Hankel matrix 2-1454
HDF

appending to when saving
(WriteMode) 2-1638

compression 2-1637
setting JPEG quality when writing 2-1638

HDF files
writing images 2-1634

HDF4
summary of capabilities 2-1455

HDF5
high-level access 2-1457
summary of capabilities 2-1457

HDF5 class
low-level access 2-1457

hdf5info 2-1460
hdf5read 2-1462
hdf5write 2-1464
hdfinfo 2-1468
hdfread 2-1476
hdftool 2-1488
Head1Length

annotation doublearrow property 2-151
Head1Style

annotation doublearrow property 2-152
Head1Width

annotation doublearrow property 2-153
Head2Length

annotation doublearrow property 2-151
Head2Style

annotation doublearrow property 2-152
Head2Width

annotation doublearrow property 2-153
HeadLength

Index-25

Index

annotation arrow property 2-147
textarrow property 2-167

HeadStyle
annotation arrow property 2-147
textarrow property 2-167

HeadWidth
annotation arrow property 2-148
textarrow property 2-168

Height
annotation ellipse property 2-157

help 2-1489
contents file 2-1490
creating for M-files 2-1491
keyword search in functions 2-1989
online 2-1489

Help browser 2-1494
accessing from doc 2-910

Help Window 2-1499
helpbrowser 2-1494
helpdesk 2-1496
helpdlg 2-1497
helpwin 2-1499
Hermite transformations, elementary 2-1348
hess 2-1500
Hessenberg form of a matrix 2-1500
hex2dec 2-1503
hex2num 2-1504
hidden 2-1539
Hierarchical Data Format (HDF) files

writing images 2-1634
hilb 2-1540
Hilbert matrix 2-1540

inverse 2-1728
hist 2-1541
histc 2-1545
HitTest

areaseries property 2-203
Axes property 2-285
barseries property 2-332
contour property 2-639

errorbar property 2-980
Figure property 2-1116
hggroup property 2-1515
hgtransform property 2-1535
Image property 2-1601
Light property 2-1896
Line property 2-1914
lineseries property 2-1927
Patch property 2-2352
quivergroup property 2-2567
rectangle property 2-2625
Root property 2-2708
scatter property 2-2767
stairseries property 2-2937
stem property 2-2970
Surface property 2-3111
surfaceplot property 2-3132
Text property 2-3211
Uicontrol property 2-3359

HitTestArea
areaseries property 2-204
barseries property 2-333
contour property 2-639
errorbar property 2-980
quivergroup property 2-2567
scatter property 2-2768
stairseries property 2-2937
stem property 2-2970

hold 2-1548
home 2-1550
HorizontalAlignment

Text property 2-3212
textarrow property 2-168
textbox property 2-179
Uicontrol property 2-3360

horzcat 2-1551
horzcat (M-file function equivalent for [,]) 2-56
horzcat (tscollection) 2-1553
hostid 2-1554

Index-26

Index

Householder reflections (as algorithm for solving
linear equations) 2-2127

hsv2rgb 2-1555
HTML

in Command Window 2-2035
save M-file as 2-2511

HTML browser
in MATLAB 2-1494

HTML files
opening 1-5 1-8 2-3581

hyperbolic
cosecant 2-702
cosecant, inverse 2-79
cosine 2-682
cosine, inverse 2-69
cotangent 2-687
cotangent, inverse 2-74
secant 2-2783
secant, inverse 2-221
sine 2-2838
sine, inverse 2-226
tangent 2-3184
tangent, inverse 2-237

hyperlink
displaying in Command Window 2-891

hyperlinks
in Command Window 2-2035

hyperplanes, angle between 2-3070
hypot 2-1556

I
i 2-1559
icon images

reading 2-1622
idealfilter (timeseries) 2-1560
identity matrix 2-1021

sparse 2-2880
idivide 2-1563
IEEE floating-point arithmetic

smallest positive number 2-2607
if 2-1565
ifft 2-1569
ifft2 2-1571
ifftn 2-1573
ifftshift 2-1575
IIR filter 2-1174
ilu 2-1576
im2java 2-1581
imag 2-1583
image 2-1584
Image

creating 2-1584
properties 2-1591

image types
querying 2-1610

images
file formats 2-1620 2-1633
reading data from files 2-1620
returning information about 2-1609
writing to files 2-1633

Images
converting MATLAB image to Java

Image 2-1581
imagesc 2-1606
imaginary 2-1583

part of complex number 2-1583
unit (sqrt(\xd0 1)) 2-1559 2-1816
See also complex

imfinfo
returning file information 2-1609

imformats 2-1612
import 2-1615
importdata 2-1617
importing

Java class and package names 2-1615
imread 2-1620
imwrite 2-1633
incomplete beta function

(defined) 2-361

Index-27

Index

incomplete gamma function
(defined) 2-1343

ind2sub 2-1648
Index into matrix is negative or zero (error

message) 2-1981
indexing

logical 2-1980
indicator of file position 2-1274
indices, array

of sorted elements 2-2855
Inf 2-1652
inferiorto 2-1654
infinity 2-1652

norm 2-2207
info 2-1655
information

returning file information 2-1609
inheritance, of objects 2-537
inline 2-1656
inmem 2-1659
inpolygon 2-1661
input 2-1663

checking number of M-file arguments 2-2186
name of array passed as 2-1668
number of M-file arguments 2-2188
prompting users for 2-1663 2-2083

inputdlg 2-1664
inputname 2-1668
inputParser 2-1669
inspect 2-1675
installation, root directory of 2-2042
instrcallback 2-1682
instrfind 2-1684
instrfindall 2-1686

example of 2-1687
int2str 2-1689
integer

floating-point, maximum 2-386
integration

polynomial 2-2456

quadrature 2-2542
interfaces 2-1692
interp1 2-1694
interp1q 2-1702
interp2 2-1704
interp3 2-1708
interpft 2-1710
interpn 2-1711
interpolated shading and printing 2-2483
interpolation

cubic method 2-1427 2-1694 2-1704 2-1708
2-1711

cubic spline method 2-1694 2-1704 2-1708
2-1711

FFT method 2-1710
linear method 2-1694 2-1704 2-1708 2-1711
multidimensional 2-1711
nearest neighbor method 2-1427 2-1694

2-1704 2-1708 2-1711
one-dimensional 2-1694
three-dimensional 2-1708
trilinear method 2-1427
two-dimensional 2-1704

Interpreter
Text property 2-3213
textarrow property 2-168
textbox property 2-180

interpstreamspeed 2-1714
Interruptible

areaseries property 2-204
Axes property 2-286
barseries property 2-333
contour property 2-640
errorbar property 2-981
Figure property 2-1116
hggroup property 2-1515
hgtransform property 2-1535
Image property 2-1601
Light property 2-1896
Line property 2-1915

Index-28

Index

lineseries property 2-1928
patch property 2-2352
quivergroup property 2-2568
rectangle property 2-2625
Root property 2-2708
scatter property 2-2768
stairseries property 2-2937
stem property 2-2971
Surface property 2-3111 2-3132
Text property 2-3214
Uicontextmenu property 2-3339
Uicontrol property 2-3360
Uimenu property 2-3401
Uipushtool property 2-3435
Uitoggletool property 2-3466
Uitoolbar property 2-3478

intersect 2-1718
intmax 2-1719
intmin 2-1720
intwarning 2-1721
inv 2-1725
inverse

cosecant 2-76
cosine 2-66
cotangent 2-71
Fourier transform 2-1569 2-1571 2-1573
Hilbert matrix 2-1728
hyperbolic cosecant 2-79
hyperbolic cosine 2-69
hyperbolic cotangent 2-74
hyperbolic secant 2-221
hyperbolic sine 2-226
hyperbolic tangent 2-237
of a matrix 2-1725
secant 2-218
sine 2-223
tangent 2-232
tangent, four-quadrant 2-234

inversion, matrix
accuracy of 2-607

InvertHardCopy, Figure property 2-1117
invhilb 2-1728
invoke 2-1729
involutary matrix 2-2327
ipermute 2-1732
iqr (timeseries) 2-1733
is* 2-1735
isa 2-1737
isappdata function 2-1739
iscell 2-1740
iscellstr 2-1741
ischar 2-1742
iscom 2-1743
isdir 2-1744
isempty 2-1745
isempty (timeseries) 2-1746
isempty (tscollection) 2-1747
isequal 2-1748
isequalwithequalnans 2-1751
isevent 2-1753
isfield 2-1755
isfinite 2-1757
isfloat 2-1758
isglobal 2-1759
ishandle 2-1761
isinf 2-1763
isinteger 2-1764
isinterface 2-1765
isjava 2-1766
iskeyword 2-1767
isletter 2-1769
islogical 2-1770
ismac 2-1771
ismember 2-1772
ismethod 2-1774
isnan 2-1775
isnumeric 2-1776
isobject 2-1777
isocap 2-1778
isonormals 2-1785

Index-29

Index

isosurface 2-1788
calculate data from volume 2-1788
end caps 2-1778
vertex normals 2-1785

ispc 2-1792
ispref function 2-1793
isprime 2-1794
isprop 2-1795
isreal 2-1796
isscalar 2-1799
issorted 2-1800
isspace 2-1803 2-1806
issparse 2-1804
isstr 2-1805
isstruct 2-1809
isstudent 2-1810
isunix 2-1811
isvalid 2-1812

timer object 2-1813
isvarname 2-1814
isvector 2-1815
italics font

TeX characters 2-3222

J
j 2-1816
Jacobi rotations 2-2902
Jacobian elliptic functions

(defined) 2-947
Jacobian matrix (BVP) 2-421
Jacobian matrix (ODE) 2-2262

generating sparse numerically 2-2263
2-2265

specifying 2-2262 2-2265
vectorizing ODE function 2-2263 to 2-2265

Java
class names 2-541 2-1615
objects 2-1766

Java Image class

creating instance of 2-1581
Java import list

adding to 2-1615
clearing 2-541

Java version used by MATLAB 2-3530
java_method 2-1821 2-1828
java_object 2-1830
javaaddath 2-1817
javachk 2-1822
javaclasspath 2-1824
javarmpath 2-1832
joining arrays. See concatenation
Joint Photographic Experts Group (JPEG)

writing 2-1634
JPEG

setting Bitdepth 2-1638
specifying mode 2-1638

JPEG comment
setting when writing a JPEG image 2-1638

JPEG files
parameters that can be set when

writing 2-1638
writing 2-1634

JPEG quality
setting when writing a JPEG image 2-1638

2-1643
setting when writing an HDF image 2-1638

jvm
version used by MATLAB 2-3530

K
K>> prompt

keyboard function 2-1836
keyboard 2-1836
keyboard mode 2-1836

terminating 2-2689
KeyPressFcn

Uicontrol property 2-3361
KeyPressFcn, Figure property 2-1117

Index-30

Index

KeyReleaseFcn, Figure property 2-1119
keyword search in functions 2-1989
keywords

iskeyword function 2-1767
kron 2-1837
Kronecker tensor product 2-1837

L
Label, Uimenu property 2-3402
labeling

axes 2-3618
matrix columns 2-891
plots (with numeric values) 2-2218

LabelSpacing
contour property 2-640

Laplacian 2-829
largest array elements 2-2061
lasterr 2-1839
lasterror 2-1842
lastwarn 2-1846
LaTeX, see TeX 2-170 2-182 2-3220
Layer, Axes property 2-286
Layout Editor

starting 2-1448
lcm 2-1848
LData

errorbar property 2-981
LDataSource

errorbar property 2-981
ldivide (M-file function equivalent for .\) 2-41
le 2-1856
least common multiple 2-1848
least squares

polynomial curve fitting 2-2452
problem, overdetermined 2-2413

legend 2-1858
properties 2-1863
setting text properties 2-1863

legendre 2-1866

Legendre functions
(defined) 2-1866
Schmidt semi-normalized 2-1866

length 2-1870
serial port I/O 2-1871

length (timeseries) 2-1872
length (tscollection) 2-1873
LevelList

contour property 2-641
LevelListMode

contour property 2-641
LevelStep

contour property 2-641
LevelStepMode

contour property 2-641
libfunctions 2-1874
libfunctionsview 2-1876
libisloaded 2-1878
libpointer 2-1880
libstruct 2-1882
license 2-1885
light 2-1889
Light

creating 2-1889
defining default properties 2-1588 2-1890
positioning in camera coordinates 2-436
properties 2-1891

Light object
positioning in spherical coordinates 2-1899

lightangle 2-1899
lighting 2-1900
limits of axes, setting and querying 2-3620
line 2-1902

editing 2-2430
Line

creating 2-1902
defining default properties 2-1907
properties 2-1908 2-1921 2-2617

line numbers in M-files 2-783
linear audio signal 2-1901 2-2169

Index-31

Index

linear dependence (of data) 2-3070
linear equation systems

accuracy of solution 2-607
solving overdetermined 2-2532 to 2-2533

linear equation systems, methods for solving
Cholesky factorization 2-2125
Gaussian elimination 2-2126
Householder reflections 2-2127
matrix inversion (inaccuracy of) 2-1725

linear interpolation 2-1694 2-1704 2-1708 2-1711
linear regression 2-2452
linearly spaced vectors, creating 2-1954
LineColor

contour property 2-642
lines

computing 2-D stream 1-101 2-2994
computing 3-D stream 1-101 2-2996
drawing stream lines 1-101 2-2998

LineSpec 1-85 2-1937
LineStyle

annotation arrow property 2-148
annotation doublearrow property 2-153
annotation ellipse property 2-157
annotation line property 2-159
annotation rectangle property 2-163
annotation textbox property 2-180
areaseries property 2-204
barseries property 2-333
contour property 2-642
errorbar property 2-982
Line property 2-1916
lineseries property 2-1928
patch property 2-2352
quivergroup property 2-2568
rectangle property 2-2625
stairseries property 2-2938
stem property 2-2971
surface object 2-3111
surfaceplot object 2-3133
text object 2-3215

textarrow property 2-169
LineStyleOrder

Axes property 2-286
LineWidth

annotation arrow property 2-149
annotation doublearrow property 2-154
annotation ellipse property 2-157
annotation line property 2-160
annotation rectangle property 2-163
annotation textbox property 2-181
areaseries property 2-205
Axes property 2-288
barseries property 2-334
contour property 2-643
errorbar property 2-982
Line property 2-1916
lineseries property 2-1929
Patch property 2-2353
quivergroup property 2-2569
rectangle property 2-2625
scatter property 2-2769
stairseries property 2-2939
stem property 2-2972
Surface property 2-3112
surfaceplot property 2-3134
text object 2-3216
textarrow property 2-169

linkaxes 2-1943
linkprop 2-1947
links

in Command Window 2-2035
linsolve 2-1951
linspace 2-1954
lint tool for checking problems 2-2129
list boxes 2-3344

defining items 2-3367
ListboxTop, Uicontrol property 2-3362
listdlg 2-1955
listfonts 2-1958
little endian formats 2-1225

Index-32

Index

load 2-1960 2-1965
serial port I/O 2-1966

loadlibrary 2-1968
loadobj 2-1974
Lobatto IIIa ODE solver 2-412
local variables 2-1294 2-1409
locking M-files 2-2139
log 2-1976

saving session to file 2-880
log10 [log010] 2-1977
log1p 2-1978
log2 2-1979
logarithm

base ten 2-1977
base two 2-1979
complex 2-1976 to 2-1977
natural 2-1976
of beta function (natural) 2-363
of gamma function (natural) 2-1344
of real numbers 2-2605
plotting 2-1982

logarithmic derivative
gamma function 2-2508

logarithmically spaced vectors, creating 2-1988
logical 2-1980
logical array

converting numeric array to 2-1980
detecting 2-1770

logical indexing 2-1980
logical operations

AND, bit-wise 2-382
OR, bit-wise 2-388
XOR 2-3645
XOR, bit-wise 2-392

logical operators 2-48 2-50
logical OR

bit-wise 2-388
logical tests 2-1737

all 2-127
any 2-187

See also detecting
logical XOR 2-3645

bit-wise 2-392
loglog 2-1982
logm 2-1985
logspace 2-1988
lookfor 2-1989
lossy compression

writing JPEG files with 2-1638
Lotus WK1 files

loading 2-3612
writing 2-3614

lower 2-1991
lower triangular matrix 2-3283
lowercase to uppercase 2-3508
ls 2-1992
lscov 2-1993
lsqnonneg 2-1998
lsqr 2-2001
lt 2-2006
lu 2-2008
LU factorization 2-2008

storage requirements of (sparse) 2-2222
luinc 2-2016

M
M-file

debugging 2-1836
displaying during execution 2-925
function 2-1294
function file, echoing 2-925
naming conventions 2-1294
pausing execution of 2-2367
programming 2-1294
script 2-1294
script file, echoing 2-925

M-files
checking existence of 2-1009
checking for problems 2-2129

Index-33

Index

clearing from workspace 2-539
creating

in MATLAB directory 2-2361
debugging with profile 2-2498
deleting 2-848
editing 2-929
line numbers, listing 2-783
lint tool 2-2129
listing names of in a directory 2-3587
locking (preventing clearing) 2-2139
opening 2-2274
optimizing 2-2498
problems, checking for 2-2129
save to HTML 2-2511
setting breakpoints 2-773
unlocking (allowing clearing) 2-2181

M-Lint
function 2-2129
function for entire directory 2-2135
HTML report 2-2135

machine epsilon 2-3596
magic 2-2023
magic squares 2-2023
Margin

annotation textbox property 2-181
text object 2-3218

Marker
Line property 2-1916
lineseries property 2-1929
marker property 2-983
Patch property 2-2353
quivergroup property 2-2569
scatter property 2-2769
stairseries property 2-2939
stem property 2-2972
Surface property 2-3112
surfaceplot property 2-3134

MarkerEdgeColor
errorbar property 2-983
Line property 2-1917

lineseries property 2-1930
Patch property 2-2354
quivergroup property 2-2570
scatter property 2-2770
stairseries property 2-2940
stem property 2-2973
Surface property 2-3113
surfaceplot property 2-3135

MarkerFaceColor
errorbar property 2-984
Line property 2-1917
lineseries property 2-1930
Patch property 2-2354
quivergroup property 2-2570
scatter property 2-2770
stairseries property 2-2940
stem property 2-2973
Surface property 2-3113
surfaceplot property 2-3135

MarkerSize
errorbar property 2-984
Line property 2-1918
lineseries property 2-1930
Patch property 2-2355
quivergroup property 2-2570
stairseries property 2-2940
stem property 2-2974
Surface property 2-3114
surfaceplot property 2-3135

mass matrix (ODE) 2-2266
initial slope 2-2267 to 2-2268
singular 2-2267
sparsity pattern 2-2267
specifying 2-2267
state dependence 2-2267

MAT-file 2-2736
converting sparse matrix after loading

from 2-2867
MAT-files 2-1960

listing for directory 2-3587

Index-34

Index

mat2cell 2-2028
mat2str 2-2031
material 2-2033
MATLAB

directory location 2-2042
installation directory 2-2042
quitting 2-2551
startup 2-2040
version number, comparing 2-3528
version number, displaying 2-3522

matlab : function 2-2035
matlab (UNIX command) 2-2044
matlab (Windows command) 2-2057
matlab function for UNIX 2-2044
matlab function for Windows 2-2057
MATLAB startup file 2-2949
matlab.mat 2-1960 2-2736
matlabcolon function 2-2035
matlabrc 2-2040
matlabroot 2-2042
$matlabroot 2-2042
matrices

preallocation 2-3648
matrix 2-36

addressing selected rows and columns
of 2-57

arrowhead 2-592
companion 2-600
complex unitary 2-2530
condition number of 2-607 2-2600
condition number, improving 2-309
converting to formatted data file 2-1245
converting to from string 2-2920
converting to vector 2-57
decomposition 2-2530
defective (defined) 2-933
detecting sparse 2-1804
determinant of 2-871
diagonal of 2-877
Dulmage-Mendelsohn decomposition 2-908

evaluating functions of 2-1303
exponential 2-1016
flipping left-right 2-1207
flipping up-down 2-1208
Hadamard 2-1453 2-3070
Hankel 2-1454
Hermitian Toeplitz 2-3273
Hessenberg form of 2-1500
Hilbert 2-1540
identity 2-1021
inverse 2-1725
inverse Hilbert 2-1728
inversion, accuracy of 2-607
involutary 2-2327
left division (arithmetic operator) 2-37
lower triangular 2-3283
magic squares 2-2023 2-3078
maximum size of 2-605
modal 2-931
multiplication (defined) 2-37
orthonormal 2-2530
Pascal 2-2327 2-2459
permutation 2-2008 2-2530
poorly conditioned 2-1540
power (arithmetic operator) 2-38
pseudoinverse 2-2413
reading files into 2-900
reduced row echelon form of 2-2731
replicating 2-2671
right division (arithmetic operator) 2-37
rotating 90\xfb 2-2720
Schur form of 2-2733 2-2776
singularity, test for 2-871
sorting rows of 2-2858
sparse. See sparse matrix
specialized 2-1320
square root of 2-2914
subspaces of 2-3070
test 2-1320
Toeplitz 2-3273

Index-35

Index

trace of 2-877 2-3275
transpose (arithmetic operator) 2-38
transposing 2-54
unimodular 2-1348
unitary 2-3149
upper triangular 2-3290
Vandermonde 2-2454
Wilkinson 2-2873 2-3607
writing as binary data 2-1308
writing formatted data to 2-1275
writing to ASCII delimited file 2-904
writing to spreadsheet 2-3614
See also array

Matrix
hgtransform property 2-1536

matrix functions
evaluating 2-1303

matrix names, (M1 through M12) generating a
sequence of 2-997

matrix power. See matrix, exponential
max 2-2061
max (timeseries) 2-2062
Max, Uicontrol property 2-3362
MaxHeadSize

quivergroup property 2-2571
maximum matching 2-908
MDL-files

checking existence of 2-1009
mean 2-2066
mean (timeseries) 2-2067
median 2-2069
median (timeseries) 2-2070
median value of array elements 2-2069
memmapfile 2-2076
memory 2-2082

clearing 2-539
minimizing use of 2-2308
variables in 2-3600

menu (of user input choices) 2-2083
menu function 2-2083

MenuBar, Figure property 2-1122
mesh plot

tetrahedron 2-3189
mesh size (BVP) 2-424
meshc 1-96 2-2085
meshgrid 2-2090
MeshStyle, Surface property 2-3114
MeshStyle, surfaceplot property 2-3136
meshz 1-96 2-2085
message

error See error message 2-3564
warning See warning message 2-3564

methods 2-2092
inheritance of 2-537
locating 2-3591

methodsview 2-2094
mex 2-2096
MEX-files

clearing from workspace 2-539
debugging on UNIX 2-764
listing for directory 2-3587

mexext 2-2098
mfilename 2-2099
mget function 2-2100
Microsoft Excel files

loading 2-3625
min 2-2101
min (timeseries) 2-2102
Min, Uicontrol property 2-3363
MinColormap, Figure property 2-1122
minimum degree ordering 2-3170
MinorGridLineStyle, Axes property 2-288
minres 2-2106
minus (M-file function equivalent for -) 2-41
mislocked 2-2111
mkdir 2-2112
mkdir (ftp) 2-2115
mkpp 2-2116
mldivide (M-file function equivalent for \) 2-41
mlint 2-2129

Index-36

Index

mlintrpt 2-2135
suppressing messages 2-2138

mlock 2-2139
mmfileinfo 2-2140
mod 2-2143
modal matrix 2-931
mode 2-2145
mode objects

pan, using 2-2312
rotate3d, using 2-2724
zoom, using 2-3653

models
opening 2-2274
saving 2-2747

modfication date
of a file 2-885

modified Bessel functions
relationship to Airy functions 2-121

modulo arithmetic 2-2143
MonitorPosition

Root property 2-2708
Moore-Penrose pseudoinverse 2-2413
more 2-2148 2-2169
move 2-2150
movefile 2-2152
movegui function 2-2155
movie 2-2157
movie2avi 2-2160
movies

exporting in AVI format 2-252
mpower (M-file function equivalent for ^) 2-42
mput function 2-2162
mrdivide (M-file function equivalent for /) 2-41
msgbox 2-2163
mtimes 2-2165
mtimes (M-file function equivalent for *) 2-41
mu-law encoded audio signals 2-1901 2-2169
multibandread 2-2170
multibandwrite 2-2175
multidimensional arrays 2-1870

concatenating 2-459
interpolation of 2-1711
longest dimension of 2-1870
number of dimensions of 2-2197
rearranging dimensions of 2-1732 2-2405
removing singleton dimensions of 2-2917
reshaping 2-2680
size of 2-2840
sorting elements of 2-2854
See also array

multiple
least common 2-1848

multiplication
array (arithmetic operator) 2-37
matrix (defined) 2-37
of polynomials 2-656

multistep ODE solver 2-2242
munlock 2-2181

N
Name, Figure property 2-1123
namelengthmax 2-2183
naming conventions

M-file 2-1294
NaN 2-2184
NaN (Not-a-Number) 2-2184

returned by rem 2-2667
nargchk 2-2186
nargoutchk 2-2190
native2unicode 2-2192
ndgrid 2-2195
ndims 2-2197
ne 2-2198
nearest neighbor interpolation 2-1427 2-1694

2-1704 2-1708 2-1711
newplot 2-2200
NextPlot

Axes property 2-288
Figure property 2-1123

Index-37

Index

nextpow2 2-2203
nnz 2-2204
no derivative method 2-1222
noncontiguous fields, inserting data into 2-1308
nonzero entries

specifying maximum number of in sparse
matrix 2-2864

nonzero entries (in sparse matrix)
allocated storage for 2-2222
number of 2-2204
replacing with ones 2-2894
vector of 2-2206

nonzeros 2-2206
norm 2-2207

1-norm 2-2207 2-2600
2-norm (estimate of) 2-2209
F-norm 2-2207
infinity 2-2207
matrix 2-2207
pseudoinverse and 2-2413 2-2415
vector 2-2207

normal vectors, computing for volumes 2-1785
NormalMode

Patch property 2-2355
Surface property 2-3114
surfaceplot property 2-3136

normest 2-2209
not 2-2210
not (M-file function equivalent for ~) 2-49
notebook 2-2211
now 2-2212
nthroot 2-2213
null 2-2214
null space 2-2214
num2cell 2-2216
num2hex 2-2217
num2str 2-2218
number

of array dimensions 2-2197
numbers

imaginary 2-1583
NaN 2-2184
plus infinity 2-1652
prime 2-2470
random 2-2583 2-2588
real 2-2604
smallest positive 2-2607

NumberTitle, Figure property 2-1124
numel 2-2220
numeric format 2-1232
numeric precision

format reading binary data 2-1259
numerical differentiation formula ODE

solvers 2-2243
numerical evaluation

double integral 2-762
triple integral 2-3285

nzmax 2-2222

O
object

determining class of 2-1737
inheritance 2-537

object classes, list of predefined 2-536 2-1737
objects

Java 2-1766
ODE file template 2-2246
ODE solver properties

error tolerance 2-2253
event location 2-2260
Jacobian matrix 2-2262
mass matrix 2-2266
ode15s 2-2268
solver output 2-2255
step size 2-2259

ODE solvers
backward differentiation formulas 2-2268
numerical differentiation formulas 2-2268
obtaining solutions at specific times 2-2230

Index-38

Index

variable order solver 2-2268
ode15i function 2-2223
odefile 2-2245
odeget 2-2251
odephas2 output function 2-2257
odephas3 output function 2-2257
odeplot output function 2-2257
odeprint output function 2-2257
odeset 2-2252
odextend 2-2270
off-screen figures, displaying 2-1188
OffCallback

Uitoggletool property 2-3467
%#ok 2-2130
OnCallback

Uitoggletool property 2-3468
one-step ODE solver 2-2242
ones 2-2273
online documentation, displaying 2-1494
online help 2-1489
open 2-2274
openfig 2-2278
OpenGL 2-1129

autoselection criteria 2-1133
opening

files in Windows applications 2-3608
opening files 2-1225
openvar 2-2285
operating system

MATLAB is running on 2-605
operating system command 1-4 1-11 2-3179
operating system command, issuing 2-56
operators

arithmetic 2-36
logical 2-48 2-50
overloading arithmetic 2-42
overloading relational 2-46
relational 2-46 2-1980
symbols 2-1489

optimget 2-2287

optimization parameters structure 2-2287 to
2-2288

optimizing M-file execution 2-2498
optimset 2-2288
or 2-2292
or (M-file function equivalent for |) 2-49
ordeig 2-2294
orderfields 2-2297
ordering

minimum degree 2-3170
reverse Cuthill-McKee 2-3160 2-3171

ordqz 2-2300
ordschur 2-2302
orient 2-2304
orth 2-2306
orthogonal-triangular decomposition 2-2530
orthographic projection, setting and

querying 2-445
orthonormal matrix 2-2530
otherwise 2-2307
Out of memory (error message) 2-2308
OuterPosition

Axes property 2-288
output

checking number of M-file arguments 2-2190
controlling display format 2-1232
in Command Window 2-2148
number of M-file arguments 2-2188

output points (ODE)
increasing number of 2-2255

output properties (DDE) 2-807
output properties (ODE) 2-2255

increasing number of output points 2-2255
overdetermined equation systems,

solving 2-2532 to 2-2533
overflow 2-1652
overloading

arithmetic operators 2-42
relational operators 2-46
special characters 2-56

Index-39

Index

P
P-files

checking existence of 2-1009
pack 2-2308
pagesetupdlg 2-2310
paging

of screen 2-1491
paging in the Command Window 2-2148
pan mode objects 2-2312
PaperOrientation, Figure property 2-1124
PaperPosition, Figure property 2-1124
PaperPositionMode, Figure property 2-1124
PaperSize, Figure property 2-1125
PaperType, Figure property 2-1125
PaperUnits, Figure property 2-1126
parametric curve, plotting 2-1042
Parent

areaseries property 2-205
Axes property 2-290
barseries property 2-334
contour property 2-643
errorbar property 2-984
Figure property 2-1127
hggroup property 2-1516
hgtransform property 2-1536
Image property 2-1602
Light property 2-1896
Line property 2-1918
lineseries property 2-1931
Patch property 2-2355
quivergroup property 2-2571
rectangle property 2-2626
Root property 2-2709
scatter property 2-2770
stairseries property 2-2940
stem property 2-2974
Surface property 2-3114
surfaceplot property 2-3136
Text property 2-3219
Uicontextmenu property 2-3340

Uicontrol property 2-3364
Uimenu property 2-3403
Uipushtool property 2-3436
Uitoggletool property 2-3468
Uitoolbar property 2-3479

parentheses (special characters) 2-54
parse

inputParser object 2-2321
parseSoapResponse 2-2324
partial fraction expansion 2-2682
partialpath 2-2325
pascal 2-2327
Pascal matrix 2-2327 2-2459
patch 2-2328
Patch

converting a surface to 1-102 2-3090
creating 2-2328
defining default properties 2-2334
properties 2-2336
reducing number of faces 1-101 2-2631
reducing size of face 1-101 2-2829

path 2-2360
adding directories to 2-107
building from parts 2-1291
current 2-2360
removing directories from 2-2701
viewing 2-2365

path2rc 2-2362
pathdef 2-2363
pathname

partial 2-2325
toolbox directory 1-8 2-3274

pathnames
of functions or files 2-3591
relative 2-2325

pathsep 2-2364
pathtool 2-2365
pause 2-2367
pauses, removing 2-757
pausing M-file execution 2-2367

Index-40

Index

pbaspect 2-2369
PBM

parameters that can be set when
writing 2-1638

PBM files
writing 2-1634

pcg 2-2375
pchip 2-2379
pcode 2-2382
pcolor 2-2383
PCX files

writing 2-1635
PDE. See Partial Differential Equations
pdepe 2-2387
pdeval 2-2399
percent sign (special characters) 2-55
percent-brace (special characters) 2-55
perfect matching 2-908
period (.), to distinguish matrix and array

operations 2-36
period (special characters) 2-54
perl 2-2402
perl function 2-2402
Perl scripts in MATLAB 1-4 1-11 2-2402
perms 2-2404
permutation

matrix 2-2008 2-2530
of array dimensions 2-2405
random 2-2592

permutations of n elements 2-2404
permute 2-2405
persistent 2-2406
persistent variable 2-2406
perspective projection, setting and

querying 2-445
PGM

parameters that can be set when
writing 2-1638

PGM files
writing 2-1635

phase angle, complex 2-142
phase, complex

correcting angles 2-3501
pi 2-2408
pie 2-2409
pie3 2-2411
pinv 2-2413
planerot 2-2416
platform MATLAB is running on 2-605
playshow function 2-2417
plot 2-2418

editing 2-2430
plot (timeseries) 2-2425
plot box aspect ratio of axes 2-2369
plot editing mode

overview 2-2431
Plot Editor

interface 2-2431 2-2505
plot, volumetric

generating grid arrays for 2-2090
slice plot 1-90 1-101 2-2846

PlotBoxAspectRatio, Axes property 2-290
PlotBoxAspectRatioMode, Axes property 2-291
plotedit 2-2430
plotting

2-D plot 2-2418
3-D plot 1-85 2-2426
contours (a 2-1022
contours (ez function) 2-1022
ez-function mesh plot 2-1030
feather plots 2-1062
filled contours 2-1026
function plots 2-1240
functions with discontinuities 2-1050
histogram plots 2-1541
in polar coordinates 2-1045
isosurfaces 2-1788
loglog plot 2-1982
mathematical function 2-1038
mesh contour plot 2-1034

Index-41

Index

mesh plot 1-96 2-2085
parametric curve 2-1042
plot with two y-axes 2-2437
ribbon plot 1-90 2-2693
rose plot 1-89 2-2716
scatter plot 2-2433
scatter plot, 3-D 1-90 2-2757
semilogarithmic plot 1-86 2-2786
stem plot, 3-D 1-88 2-2960
surface plot 1-96 2-3085
surfaces 1-89 2-1048
velocity vectors 2-611
volumetric slice plot 1-90 1-101 2-2846
. See visualizing

plus (M-file function equivalent for +) 2-41
PNG

writing options for 2-1640
alpha 2-1640
background color 2-1640
chromaticities 2-1641
gamma 2-1641
interlace type 2-1641
resolution 2-1642
significant bits 2-1641
transparency 2-1642

PNG files
writing 2-1635

PNM files
writing 2-1635

Pointer, Figure property 2-1127
PointerLocation, Root property 2-2709
PointerShapeCData, Figure property 2-1127
PointerShapeHotSpot, Figure property 2-1128
PointerWindow, Root property 2-2710
pol2cart 2-2440
polar 2-2442
polar coordinates 2-2440

computing the angle 2-142
converting from Cartesian 2-454
converting to cylindrical or Cartesian 2-2440

plotting in 2-1045
poles of transfer function 2-2682
poly 2-2444
polyarea 2-2447
polyder 2-2449
polyeig 2-2450
polyfit 2-2452
polygamma function 2-2508
polygon

area of 2-2447
creating with patch 2-2328
detecting points inside 2-1661

polyint 2-2456
polynomial

analytic integration 2-2456
characteristic 2-2444 to 2-2445 2-2714
coefficients (transfer function) 2-2682
curve fitting with 2-2452
derivative of 2-2449
division 2-828
eigenvalue problem 2-2450
evaluation 2-2457
evaluation (matrix sense) 2-2459
make piecewise 2-2116
multiplication 2-656

polyval 2-2457
polyvalm 2-2459
poorly conditioned

matrix 2-1540
poorly conditioned eigenvalues 2-309
pop-up menus 2-3344

defining choices 2-3367
Portable Anymap files

writing 2-1635
Portable Bitmap (PBM) files

writing 2-1634
Portable Graymap files

writing 2-1635
Portable Network Graphics files

writing 2-1635

Index-42

Index

Portable pixmap format
writing 2-1635

Position
annotation ellipse property 2-157
annotation line property 2-160
annotation rectangle property 2-164
arrow property 2-149
Axes property 2-291
doubletarrow property 2-154
Figure property 2-1128
Light property 2-1896
Text property 2-3219
textarrow property 2-170
textbox property 2-181
Uicontextmenu property 2-3340
Uicontrol property 2-3364
Uimenu property 2-3403

position indicator in file 2-1287
position of camera

dollying 2-432
position of camera, setting and querying 2-443
Position, rectangle property 2-2626
PostScript

default printer 2-2475
levels 1 and 2 2-2475
printing interpolated shading 2-2483

pow2 2-2461
power 2-2462

matrix. See matrix exponential
of real numbers 2-2608
of two, next 2-2203

power (M-file function equivalent for .^) 2-42
PPM

parameters that can be set when
writing 2-1638

PPM files
writing 2-1635

ppval 2-2463
pragma

%#ok 2-2130

preallocation
matrix 2-3648

precision 2-1232
reading binary data writing 2-1259

prefdir 2-2465
preferences 2-2469

opening the dialog box 2-2469
prime factors 2-1056

dependence of Fourier transform on 2-1076
2-1078 to 2-1079

prime numbers 2-2470
primes 2-2470
print frames 2-1256
printdlg 1-91 1-103 2-2487
printdlg function 2-2487
printer

default for linux and unix 2-2475
printer drivers

GhostScript drivers 2-2472
interploated shading 2-2483
MATLAB printer drivers 2-2472

printframe 2-1256
PrintFrame Editor 2-1256
printing

borders 2-1256
fig files with frames 2-1256
GUIs 2-2482
interpolated shading 2-2483
on MS-Windows 2-2481
with a variable filename 2-2485
with non-normal EraseMode 2-1913 2-2345

2-2623 2-3107 2-3208
with print frames 2-1258

printing figures
preview 1-92 1-103 2-2488

printing tips 2-2481
printing, suppressing 2-55
printpreview 1-92 1-103 2-2488
prod 2-2496
product

Index-43

Index

cumulative 2-711
Kronecker tensor 2-1837
of array elements 2-2496
of vectors (cross) 2-698
scalar (dot) 2-698

profile 2-2498
profsave 2-2504
projection type, setting and querying 2-445
ProjectionType, Axes property 2-292
prompting users for input 2-1663 2-2083
propedit 2-2505 to 2-2506
proppanel 1-86 2-2507
pseudoinverse 2-2413
psi 2-2508
publish function 2-2510
push buttons 2-3344
PutFullMatrix 2-2516
pwd 2-2523

Q
qmr 2-2524
qr 2-2530
QR decomposition 2-2530

deleting column from 2-2535
qrdelete 2-2535
qrinsert 2-2537
qrupdate 2-2539
quad 2-2542
quadl 2-2545
quadrature 2-2542
quadv 2-2547
questdlg 1-103 2-2549
questdlg function 2-2549
quit 2-2551
quitting MATLAB 2-2551
quiver 2-2554
quiver3 2-2557
quotation mark

inserting in a string 2-1250

qz 2-2580
QZ factorization 2-2451 2-2580

R
radio buttons 2-3344
rand 2-2583
randn 2-2588
random

numbers 2-2583 2-2588
permutation 2-2592
sparse matrix 2-2900 to 2-2901
symmetric sparse matrix 2-2902

randperm 2-2592
range space 2-2306
rank 2-2593
rank of a matrix 2-2593
RAS files

parameters that can be set when
writing 2-1643

writing 2-1635
RAS image format

specifying color order 2-1643
writing alpha data 2-1643

Raster image files
writing 2-1635

rational fraction approximation 2-2594
rbbox 1-100 2-2598 2-2638
rcond 2-2600
rdivide (M-file function equivalent for ./) 2-41
readasync 2-2601
reading

binary files 2-1259
data from files 2-3228
formatted data from file 2-1275
formatted data from strings 2-2920

readme files, displaying 1-5 2-1744 2-3590
real 2-2604
real numbers 2-2604
reallog 2-2605

Index-44

Index

realmax 2-2606
realmin 2-2607
realpow 2-2608
realsqrt 2-2609
rearranging arrays

converting to vector 2-57
removing first n singleton dimensions 2-2826
removing singleton dimensions 2-2917
reshaping 2-2680
shifting dimensions 2-2826
swapping dimensions 2-1732 2-2405

rearranging matrices
converting to vector 2-57
flipping left-right 2-1207
flipping up-down 2-1208
rotating 90\xfb 2-2720
transposing 2-54

record 2-2610
rectangle

rectangle function 2-2612
rectint 2-2628
RecursionLimit

Root property 2-2710
recycle 2-2629
reduced row echelon form 2-2731
reducepatch 2-2631
reducevolume 2-2635
reference page

accessing from doc 2-910
refresh 2-2638
regexprep 2-2653
regexptranslate 2-2657
registerevent 2-2660
regression

linear 2-2452
regularly spaced vectors, creating 2-57 2-1954
rehash 2-2663
relational operators 2-46 2-1980
relative accuracy

BVP 2-420

DDE 2-806
norm of DDE solution 2-806
norm of ODE solution 2-2254
ODE 2-2254

release 2-2665
rem 2-2667
removets 2-2668
rename function 2-2670
renderer

OpenGL 2-1129
painters 2-1129
zbuffer 2-1129

Renderer, Figure property 2-1129
RendererMode, Figure property 2-1133
repeatedly executing statements 2-1230 2-3594
replicating a matrix 2-2671
repmat 2-2671
resample (timeseries) 2-2673
resample (tscollection) 2-2676
reset 2-2679
reshape 2-2680
residue 2-2682
residues of transfer function 2-2682
Resize, Figure property 2-1134
ResizeFcn, Figure property 2-1134
restoredefaultpath 2-2686
rethrow 2-2687
return 2-2689
reverse Cuthill-McKee ordering 2-3160 2-3171
rewinding files to beginning of 2-1274 2-1617
RGB, converting to HSV 1-97 2-2690
rgb2hsv 2-2690
rgbplot 2-2691
ribbon 2-2693
right-click and context menus 2-3332
rmappdata function 2-2695
rmdir 2-2696
rmdir (ftp) function 2-2699
rmfield 2-2700
rmpath 2-2701

Index-45

Index

rmpref function 2-2702
RMS. See root-mean-square
rolling camera 2-446
root 1-93 2-2703
root directory 2-2042
root directory for MATLAB 2-2042
Root graphics object 1-93 2-2703
root object 2-2703
root, see rootobject 1-93 2-2703
root-mean-square

of vector 2-2207
roots 2-2714
roots of a polynomial 2-2444 to 2-2445 2-2714
rose 2-2716
Rosenbrock

banana function 2-1220
ODE solver 2-2243

rosser 2-2719
rot90 2-2720
rotate 2-2721
rotate3d 2-2724
rotate3d mode objects 2-2724
rotating camera 2-440
rotating camera target 1-98 2-442
Rotation, Text property 2-3219
rotations

Jacobi 2-2902
round 2-2730

to nearest integer 2-2730
towards infinity 2-484
towards minus infinity 2-1210
towards zero 2-1205

roundoff error
characteristic polynomial and 2-2445
convolution theorem and 2-656
effect on eigenvalues 2-309
evaluating matrix functions 2-1305
in inverse Hilbert matrix 2-1728
partial fraction expansion and 2-2683
polynomial roots and 2-2714

sparse matrix conversion and 2-2868
rref 2-2731
rrefmovie 2-2731
rsf2csf 2-2733
rubberband box 1-100 2-2598
run 2-2735
Runge-Kutta ODE solvers 2-2242
running average 2-1175

S
save 2-2736 2-2744

serial port I/O 2-2745
saveas 2-2747
saveobj 2-2751
savepath 2-2753
saving

ASCII data 2-2736
session to a file 2-880
workspace variables 2-2736

scalar product (of vectors) 2-698
scaled complementary error function

(defined) 2-965
scatter 2-2754
scatter3 2-2757
scattered data, aligning

multi-dimensional 2-2195
two-dimensional 2-1427

scattergroup
properties 2-2760

Schmidt semi-normalized Legendre
functions 2-1866

schur 2-2776
Schur decomposition 2-2776
Schur form of matrix 2-2733 2-2776
screen, paging 2-1491
ScreenDepth, Root property 2-2710
ScreenPixelsPerInch, Root property 2-2711
ScreenSize, Root property 2-2711
script 2-2779

Index-46

Index

scrolling screen 2-1491
search path 2-2701

adding directories to 2-107
MATLAB’s 2-2360
modifying 2-2365
viewing 2-2365

search, string 2-1192
sec 2-2780
secant 2-2780

hyperbolic 2-2783
inverse 2-218
inverse hyperbolic 2-221

secd 2-2782
sech 2-2783
Selected

areaseries property 2-205
Axes property 2-292
barseries property 2-334
contour property 2-643
errorbar property 2-984
Figure property 2-1136
hggroup property 2-1516
hgtransform property 2-1536
Image property 2-1602
Light property 2-1897
Line property 2-1918
lineseries property 2-1931
Patch property 2-2355
quivergroup property 2-2571
rectangle property 2-2626
Root property 2-2712
scatter property 2-2770
stairseries property 2-2941
stem property 2-2974
Surface property 2-3115
surfaceplot property 2-3136
Text property 2-3220
Uicontrol property 2-3365

selecting areas 1-100 2-2598
SelectionHighlight

areaseries property 2-206
Axes property 2-292
barseries property 2-335
contour property 2-643
errorbar property 2-985
Figure property 2-1136
hggroup property 2-1516
hgtransform property 2-1536
Image property 2-1602
Light property 2-1897
Line property 2-1918
lineseries property 2-1931
Patch property 2-2356
quivergroup property 2-2571
rectangle property 2-2626
scatter property 2-2771
stairseries property 2-2941
stem property 2-2974
Surface property 2-3115
surfaceplot property 2-3137
Text property 2-3220
Uicontrol property 2-3365

SelectionType, Figure property 2-1136
selectmoveresize 2-2785
semicolon (special characters) 2-55
send 2-2789
sendmail 2-2790
Separator

Uipushtool property 2-3436
Uitoggletool property 2-3468

Separator, Uimenu property 2-3403
sequence of matrix names (M1 through M12)

generating 2-997
serial 2-2792
serialbreak 2-2794
server (FTP)

connecting to 2-1288
server variable 2-1068
session

saving 2-880

Index-47

Index

set 1-112 2-2795 2-2799
serial port I/O 2-2800
timer object 2-2803

set (timeseries) 2-2806
set (tscollection) 2-2807
set operations

difference 2-2811
exclusive or 2-2823
intersection 2-1718
membership 2-1772
union 2-3483
unique 2-3485

setabstime (timeseries) 2-2808
setabstime (tscollection) 2-2809
setappdata 2-2810
setdiff 2-2811
setenv 2-2812
setfield 2-2813
setinterpmethod 2-2815
setpixelposition 2-2817
setpref function 2-2820
setstr 2-2821
settimeseriesnames 2-2822
setxor 2-2823
shading 2-2824
shading colors in surface plots 1-97 2-2824
ShareColors, Figure property 2-1137
shared libraries

MATLAB functions
calllib 2-429
libfunctions 2-1874
libfunctionsview 2-1876
libisloaded 2-1878
libpointer 2-1880
libstruct 2-1882
loadlibrary 2-1968
unloadlibrary 2-3490

shell script 1-4 1-11 2-3179 2-3488
shiftdim 2-2826
shifting array

circular 2-528
ShowArrowHead

quivergroup property 2-2572
ShowBaseLine

barseries property 2-335
ShowHiddenHandles, Root property 2-2712
showplottool 2-2827
ShowText

contour property 2-643
shrinkfaces 2-2829
shutdown 2-2551
sign 2-2833
signum function 2-2833
simplex search 2-1222
Simpson’s rule, adaptive recursive 2-2543
Simulink

printing diagram with frames 2-1256
version number, comparing 2-3528
version number, displaying 2-3522

sin 2-2834
sind 2-2836
sine 2-2834

hyperbolic 2-2838
inverse 2-223
inverse hyperbolic 2-226

single 2-2837
single quote (special characters) 2-54
singular value

decomposition 2-2593 2-3149
largest 2-2207
rank and 2-2593

sinh 2-2838
size

array dimesions 2-2840
serial port I/O 2-2843

size (timeseries) 2-2844
size (tscollection) 2-2845
size of array dimensions 2-2840
size of fonts, see also FontSize property 2-3222
size vector 2-2680

Index-48

Index

SizeData
scatter property 2-2771

skipping bytes (during file I/O) 2-1308
slice 2-2846
slice planes, contouring 2-651
sliders 2-3345
SliderStep, Uicontrol property 2-3365
smallest array elements 2-2101
smooth3 2-2852
smoothing 3-D data 1-101 2-2852
soccer ball (example) 2-3171
solution statistics (BVP) 2-425
sort 2-2854
sorting

array elements 2-2854
complex conjugate pairs 2-691
matrix rows 2-2858

sortrows 2-2858
sound 2-2861 to 2-2862

converting vector into 2-2861 to 2-2862
files

reading 2-250 2-3575
writing 2-251 2-3580

playing 1-81 2-3573
recording 1-82 2-3578
resampling 1-81 2-3573
sampling 1-82 2-3578

source control on UNIX platforms
checking out files

function 2-510
source control system

viewing current system 2-553
source control systems

checking in files 2-507
undo checkout 1-10 2-3481

spalloc 2-2863
sparse 2-2864
sparse matrix

allocating space for 2-2863

applying function only to nonzero elements
of 2-2881

density of 2-2204
detecting 2-1804
diagonal 2-2869
finding indices of nonzero elements of 2-1182
identity 2-2880
minimum degree ordering of 2-559
number of nonzero elements in 2-2204
permuting columns of 2-592
random 2-2900 to 2-2901
random symmetric 2-2902
replacing nonzero elements of with

ones 2-2894
results of mixed operations on 2-2865
solving least squares linear system 2-2531
specifying maximum number of nonzero

elements 2-2864
vector of nonzero elements 2-2206
visualizing sparsity pattern of 2-2911

sparse storage
criterion for using 2-1290

spaugment 2-2866
spconvert 2-2867
spdiags 2-2869
special characters

descriptions 2-1489
overloading 2-56

specular 2-2879
SpecularColorReflectance

Patch property 2-2356
Surface property 2-3115
surfaceplot property 2-3137

SpecularExponent
Patch property 2-2356
Surface property 2-3115
surfaceplot property 2-3137

SpecularStrength
Patch property 2-2356
Surface property 2-3115

Index-49

Index

surfaceplot property 2-3137
speye 2-2880
spfun 2-2881
sph2cart 2-2883
sphere 2-2884
sphereical coordinates

defining a Light position in 2-1899
spherical coordinates 2-2883
spinmap 2-2886
spline 2-2887
spline interpolation (cubic)

one-dimensional 2-1695 2-1705 2-1708
2-1711

Spline Toolbox 2-1700
spones 2-2894
spparms 2-2895
sprand 2-2900
sprandn 2-2901
sprandsym 2-2902
sprank 2-2903
spreadsheets

loading WK1 files 2-3612
loading XLS files 2-3625
reading into a matrix 2-900
writing from matrix 2-3614
writing matrices into 2-904

sprintf 2-2904
sqrt 2-2913
sqrtm 2-2914
square root

of a matrix 2-2914
of array elements 2-2913
of real numbers 2-2609

squeeze 2-2917
sscanf 2-2920
stack, displaying 2-767
standard deviation 2-2950
start

timer object 2-2946
startat

timer object 2-2947
startup 2-2949
startup file 2-2949
startup files 2-2040
State

Uitoggletool property 2-3468
Stateflow

printing diagram with frames 2-1256
static text 2-3345
std 2-2950
std (timeseries) 2-2952
stem 2-2954
stem3 2-2960
step size (DDE)

initial step size 2-810
upper bound 2-811

step size (ODE) 2-809 2-2259
initial step size 2-2259
upper bound 2-2259

stop
timer object 2-2980

stopasync 2-2981
stopwatch timer 2-3255
storage

allocated for nonzero entries (sparse) 2-2222
sparse 2-2864

storage allocation 2-3648
str2cell 2-500
str2double 2-2983
str2func 2-2984
str2mat 2-2986
str2num 2-2987
strcat 2-2989
stream lines

computing 2-D 1-101 2-2994
computing 3-D 1-101 2-2996
drawing 1-101 2-2998

stream2 2-2994
stream3 2-2996
stretch-to-fill 2-260

Index-50

Index

strfind 2-3026
string

comparing one to another 2-2991 2-3032
converting from vector to 2-506
converting matrix into 2-2031 2-2218
converting to lowercase 2-1991
converting to numeric array 2-2987
converting to uppercase 2-3508
dictionary sort of 2-2858
finding first token in 2-3043
searching and replacing 2-3042
searching for 2-1192

String
Text property 2-3220
textarrow property 2-170
textbox property 2-181
Uicontrol property 2-3366

string matrix to cell array conversion 2-500
strings 2-3028

converting to matrix (formatted) 2-2920
inserting a quotation mark in 2-1250
writing data to 2-2904

strjust 1-52 1-64 2-3030
strmatch 2-3031
strread 2-3034
strrep 1-52 1-64 2-3042
strtok 2-3043
strtrim 2-3046
struct 2-3047
struct2cell 2-3052
structfun 2-3053
structure array

getting contents of field of 2-1380
remove field from 2-2700
setting contents of a field of 2-2813

structure arrays
field names of 2-1096

structures
dynamic fields 2-55

strvcat 2-3056

Style
Light property 2-1897
Uicontrol property 2-3368

sub2ind 2-3058
subfunction 2-1294
subplot 2-3060
subsasgn 1-55 2-3067
subscripts

in axis title 2-3271
in text strings 2-3224

subsindex 2-3069
subspace 1-20 2-3070
subsref 1-55 2-3071
subsref (M-file function equivalent for

A(i,j,k...)) 2-56
substruct 2-3073
subtraction (arithmetic operator) 2-36
subvolume 2-3075
sum 2-3078

cumulative 2-713
of array elements 2-3078

sum (timeseries) 2-3081
superiorto 2-3083
superscripts

in axis title 2-3271
in text strings 2-3224

support 2-3084
surf2patch 2-3090
surface 2-3092
Surface

and contour plotter 2-1052
converting to a patch 1-102 2-3090
creating 1-93 1-96 2-3092
defining default properties 2-2616 2-3096
plotting mathematical functions 2-1048
properties 2-3097 2-3118

surface normals, computing for volumes 2-1785
surfl 2-3143
surfnorm 2-3147
svd 2-3149

Index-51

Index

svds 2-3152
swapbytes 2-3155
switch 2-3157
symamd 2-3159
symbfact 2-3163
symbols

operators 2-1489
symbols in text 2-170 2-182 2-3220
symmlq 2-3165
symmmd 2-3170
symrcm 2-3171
synchronize 2-3174
syntax 2-1490
syntax, command 2-3176
syntax, function 2-3176
syntaxes

of M-file functions, defining 2-1294
system 2-3179

UNC pathname error 2-3179
system directory, temporary 2-3187

T
table lookup. See interpolation
Tag

areaseries property 2-206
Axes property 2-292
barseries property 2-335
contour property 2-644
errorbar property 2-985
Figure property 2-1137
hggroup property 2-1516
hgtransform property 2-1537
Image property 2-1602
Light property 2-1897
Line property 2-1919
lineseries property 2-1931
Patch property 2-2357
quivergroup property 2-2572
rectangle property 2-2626

Root property 2-2712
scatter property 2-2771
stairseries property 2-2941
stem property 2-2975
Surface property 2-3116
surfaceplot property 2-3138
Text property 2-3225
Uicontextmenu property 2-3340
Uicontrol property 2-3368
Uimenu property 2-3404
Uipushtool property 2-3436
Uitoggletool property 2-3469
Uitoolbar property 2-3479

Tagged Image File Format (TIFF)
writing 2-1636

tan 2-3181
tand 2-3183
tangent 2-3181

four-quadrant, inverse 2-234
hyperbolic 2-3184
inverse 2-232
inverse hyperbolic 2-237

tanh 2-3184
tar 2-3186
target, of camera 2-447
tcpip 2-3510
tempdir 2-3187
tempname 2-3188
temporary

files 2-3188
system directory 2-3187

tensor, Kronecker product 2-1837
terminating MATLAB 2-2551
test matrices 2-1320
test, logical. See logical tests and detecting
tetrahedron

mesh plot 2-3189
tetramesh 2-3189
TeX commands in text 2-170 2-182 2-3220
text 2-3194

Index-52

Index

editing 2-2430
subscripts 2-3224
superscripts 2-3224

Text
creating 1-93 2-3194
defining default properties 2-3198
fixed-width font 2-3209
properties 2-3199

text mode for opened files 2-1224
TextBackgroundColor

textarrow property 2-172
TextColor

textarrow property 2-172
TextEdgeColor

textarrow property 2-172
TextLineWidth

textarrow property 2-173
TextList

contour property 2-644
TextListMode

contour property 2-645
TextMargin

textarrow property 2-173
textread 1-77 2-3228
TextRotation, textarrow property 2-173
textscan 1-77 2-3234
TextStep

contour property 2-645
TextStepMode

contour property 2-646
textwrap 2-3254
TickDir, Axes property 2-293
TickDirMode, Axes property 2-293
TickLength, Axes property 2-293
TIFF

compression 2-1643
encoding 2-1639
ImageDescription field 2-1643
maxvalue 2-1639

parameters that can be set when
writing 2-1643

resolution 2-1644
writemode 2-1644
writing 2-1636

TIFF image format
specifying compression 2-1643

tiling (copies of a matrix) 2-2671
time

CPU 2-692
elapsed (stopwatch timer) 2-3255
required to execute commands 2-993

time and date functions 2-960
timer

properties 2-3256
timer object 2-3256

timerfind
timer object 2-3263

timerfindall
timer object 2-3265

times (M-file function equivalent for .*) 2-41
timeseries 2-3267
timestamp 2-885
title 2-3270

with superscript 2-3271
Title, Axes property 2-294
todatenum 2-3272
toeplitz 2-3273
Toeplitz matrix 2-3273
toggle buttons 2-3345
token 2-3043

See also string
Toolbar

Figure property 2-1138
Toolbox

Spline 2-1700
toolbox directory, pathname 1-8 2-3274
toolboxdir 2-3274
TooltipString

Uicontrol property 2-3369

Index-53

Index

Uipushtool property 2-3437
Uitoggletool property 2-3469

trace 2-3275
trace of a matrix 2-877 2-3275
trailing blanks

removing 2-820
transform

hgtransform function 2-1523
transform, Fourier

discrete, n-dimensional 2-1079
discrete, one-dimensional 2-1073
discrete, two-dimensional 2-1078
inverse, n-dimensional 2-1573
inverse, one-dimensional 2-1569
inverse, two-dimensional 2-1571
shifting the zero-frequency component

of 2-1082
transformation

See also conversion 2-470
transformations

elementary Hermite 2-1348
transmitting file to FTP server 1-84 2-2162
transpose

array (arithmetic operator) 2-38
matrix (arithmetic operator) 2-38

transpose (M-file function equivalent for
.\q) 2-42

transpose (timeseries) 2-3276
trapz 2-3278
treelayout 2-3280
treeplot 2-3281
triangulation

2-D plot 2-3287
tricubic interpolation 2-1427
tril 2-3283
trilinear interpolation 2-1427
trimesh 2-3284
triple integral

numerical evaluation 2-3285
triplequad 2-3285

triplot 2-3287
trisurf 2-3289
triu 2-3290
true 2-3291
truth tables (for logical operations) 2-48
try 2-3292
tscollection 2-3293
tsdata.event 2-3296
tsearch 2-3297
tsearchn 2-3298
tsprops 2-3299
tstool 2-3305
type 2-3306
Type

areaseries property 2-206
Axes property 2-295
barseries property 2-336
contour property 2-646
errorbar property 2-985
Figure property 2-1138
hggroup property 2-1517
hgtransform property 2-1537
Image property 2-1603
Light property 2-1897
Line property 2-1919
lineseries property 2-1932
Patch property 2-2357
quivergroup property 2-2572
rectangle property 2-2627
Root property 2-2712
scatter property 2-2772
stairseries property 2-2942
stem property 2-2975
Surface property 2-3116
surfaceplot property 2-3138
Text property 2-3225
Uicontextmenu property 2-3341
Uicontrol property 2-3369
Uimenu property 2-3404
Uipushtool property 2-3437

Index-54

Index

Uitoggletool property 2-3469
Uitoolbar property 2-3479

typecast 2-3307

U
UData

errorbar property 2-986
quivergroup property 2-2573

UDataSource
errorbar property 2-986
quivergroup property 2-2573

Uibuttongroup
defining default properties 2-3315

uibuttongroup function 2-3311
Uibuttongroup Properties 2-3315
uicontextmenu 2-3332
UiContextMenu

Uicontrol property 2-3369
UIContextMenu

areaseries property 2-207
Axes property 2-295
barseries property 2-336
contour property 2-646
errorbar property 2-986
Figure property 2-1139
hggroup property 2-1517
hgtransform property 2-1537
Image property 2-1603
Light property 2-1898
Line property 2-1919
lineseries property 2-1932
Patch property 2-2357
quivergroup property 2-2573
rectangle property 2-2627
scatter property 2-2772
stairseries property 2-2942
stem property 2-2975
Surface property 2-3116
surfaceplot property 2-3138

Text property 2-3226
Uicontextmenu Properties 2-3334
uicontrol 2-3342
Uicontrol

defining default properties 2-3348
fixed-width font 2-3357
types of 2-3342

Uicontrol Properties 2-3348
uigetdir 2-3372
uigetfile 2-3377
uigetpref function 2-3387
uiimport 2-3391
uimenu 2-3392
Uimenu

creating 1-106 2-3392
defining default properties 2-3394
Properties 2-3394

Uimenu Properties 2-3394
uint16 2-3405
uint32 2-3405
uint64 2-3405
uint8 2-1690 2-3405
uiopen 2-3407
Uipanel

defining default properties 2-3411
uipanel function 2-3409
Uipanel Properties 2-3411
uipushtool 2-3427
Uipushtool

defining default properties 2-3429
Uipushtool Properties 2-3429
uiputfile 2-3439
uiresume 2-3448
uisave 2-3450
uisetcolor function 2-3453
uisetfont 2-3454
uisetpref function 2-3456
uistack 2-3457
uitoggletool 2-3458
Uitoggletool

Index-55

Index

defining default properties 2-3460
Uitoggletool Properties 2-3460
uitoolbar 2-3471
Uitoolbar

defining default properties 2-3473
Uitoolbar Properties 2-3473
uiwait 2-3448
uminus (M-file function equivalent for unary

\xd0) 2-41
UNC pathname error and dos 2-916
UNC pathname error and system 2-3179
unconstrained minimization 2-1218
undefined numerical results 2-2184
undocheckout 2-3481
unicode2native 2-3482
unimodular matrix 2-1348
union 2-3483
unique 2-3485
unitary matrix (complex) 2-2530
Units

annotation ellipse property 2-158
annotation rectangle property 2-164
arrow property 2-149
Axes property 2-295
doublearrow property 2-154
Figure property 2-1139
line property 2-160
Root property 2-2713
Text property 2-3225
textarrow property 2-173
textbox property 2-184
Uicontrol property 2-3369

unix 2-3488
UNIX

Web browser 2-912
unloadlibrary 2-3490
unlocking M-files 2-2181
unmkpp 2-3491
unregisterallevents 2-3492
unregisterevent 2-3495

untar 2-3499
unwrap 2-3501
unzip 2-3506
up vector, of camera 2-449
updating figure during M-file execution 2-921
uplus (M-file function equivalent for unary

+) 2-41
upper 2-3508
upper triangular matrix 2-3290
uppercase to lowercase 2-1991
url

opening in Web browser 1-5 1-8 2-3581
urlread 2-3509
urlwrite 2-3511
usejava 2-3513
UserData

areaseries property 2-207
Axes property 2-296
barseries property 2-336
contour property 2-646
errorbar property 2-987
Figure property 2-1140
hggroup property 2-1517
hgtransform property 2-1538
Image property 2-1603
Light property 2-1898
Line property 2-1919
lineseries property 2-1932
Patch property 2-2358
quivergroup property 2-2573
rectangle property 2-2627
Root property 2-2713
scatter property 2-2772
stairseries property 2-2942
stem property 2-2976
Surface property 2-3116
surfaceplot property 2-3139
Text property 2-3226
Uicontextmenu property 2-3341
Uicontrol property 2-3370

Index-56

Index

Uimenu property 2-3404
Uipushtool property 2-3437
Uitoggletool property 2-3469
Uitoolbar property 2-3480

V
Value, Uicontrol property 2-3370
vander 2-3515
Vandermonde matrix 2-2454
var 2-3516
var (timeseries) 2-3517
varargin 2-3519
varargout 2-3520
variable numbers of M-file arguments 2-3520
variable-order solver (ODE) 2-2268
variables

checking existence of 2-1009
clearing from workspace 2-539
global 2-1409
graphical representation of 2-3616
in workspace 2-3616
listing 2-3600
local 2-1294 2-1409
name of passed 2-1668
opening 2-2274 2-2285
persistent 2-2406
saving 2-2736
sizes of 2-3600

VData
quivergroup property 2-2574

VDataSource
quivergroup property 2-2574

vector
dot product 2-917
frequency 2-1988
length of 2-1870
product (cross) 2-698

vector field, plotting 2-611
vectorize 2-3521

vectorizing ODE function (BVP) 2-421
vectors, creating

logarithmically spaced 2-1988
regularly spaced 2-57 2-1954

velocity vectors, plotting 2-611
ver 2-3522
verctrl function (Windows) 2-3524
verLessThan 2-3528
version 2-3530
version numbers

comparing 2-3528
displaying 2-3522

vertcat 2-3532
vertcat (M-file function equivalent for [2-56
vertcat (timeseries) 2-3534
vertcat (tscollection) 2-3535
VertexNormals

Patch property 2-2358
Surface property 2-3117
surfaceplot property 2-3139

VerticalAlignment, Text property 2-3226
VerticalAlignment, textarrow property 2-174
VerticalAlignment, textbox property 2-184
Vertices, Patch property 2-2358
video

saving in AVI format 2-252
view 2-3536

azimuth of viewpoint 2-3537
coordinate system defining 2-3537
elevation of viewpoint 2-3537

view angle, of camera 2-451
View, Axes property (obsolete) 2-296
viewing

a group of object 2-438
a specific object in a scene 2-438

viewmtx 2-3539
Visible

areaseries property 2-207
Axes property 2-296
barseries property 2-336

Index-57

Index

contour property 2-646
errorbar property 2-987
Figure property 2-1140
hggroup property 2-1518
hgtransform property 2-1538
Image property 2-1604
Light property 2-1898
Line property 2-1919
lineseries property 2-1933
Patch property 2-2358
quivergroup property 2-2573
rectangle property 2-2627
Root property 2-2713
scatter property 2-2772
stairseries property 2-2942
stem property 2-2976
Surface property 2-3117
surfaceplot property 2-3139
Text property 2-3227
Uicontextmenu property 2-3341
Uicontrol property 2-3371
Uimenu property 2-3404
Uipushtool property 2-3437
Uitoggletool property 2-3470
Uitoolbar property 2-3480

visualizing
cell array structure 2-498
sparse matrices 2-2911

volumes
calculating isosurface data 2-1788
computing 2-D stream lines 1-101 2-2994
computing 3-D stream lines 1-101 2-2996
computing isosurface normals 2-1785
contouring slice planes 2-651
drawing stream lines 1-101 2-2998
end caps 2-1778
reducing face size in isosurfaces 1-101

2-2829
reducing number of elements in 1-101 2-2635

voronoi 2-3546

Voronoi diagrams
multidimensional vizualization 2-3552
two-dimensional vizualization 2-3546

voronoin 2-3552

W
wait

timer object 2-3556
waitbar 2-3557
waitfor 2-3559
waitforbuttonpress 2-3560
warndlg 2-3561
warning 2-3564
warning message (enabling, suppressing, and

displaying) 2-3564
waterfall 2-3568
.wav files

reading 2-3575
writing 2-3580

waverecord 2-3578
wavfinfo 2-3572
wavplay 1-81 2-3573
wavread 2-3572 2-3575
wavrecord 1-82 2-3578
wavwrite 2-3580
WData

quivergroup property 2-2575
WDataSource

quivergroup property 2-2575
web 2-3581
Web browser

displaying help in 2-1494
pointing to file or url 1-5 1-8 2-3581
specifying for UNIX 2-912

weekday 2-3585
well conditioned 2-2600
what 2-3587
whatsnew 2-3590
which 2-3591

Index-58

Index

while 2-3594
white space characters, ASCII 2-1803 2-3043
whitebg 2-3598
who, whos

who 2-3600
wilkinson 2-3607
Wilkinson matrix 2-2873 2-3607
WindowButtonDownFcn, Figure property 2-1140
WindowButtonMotionFcn, Figure

property 2-1141
WindowButtonUpFcn, Figure property 2-1141
Windows Paintbrush files

writing 2-1635
WindowScrollWheelFcn, Figure property 2-1142
WindowStyle, Figure property 2-1145
winopen 2-3608
winqueryreg 2-3609
WK1 files

loading 2-3612
writing from matrix 2-3614

wk1finfo 2-3611
wk1read 2-3612
wk1write 2-3614
workspace 2-3616

changing context while debugging 2-761
2-784

clearing items from 2-539
consolidating memory 2-2308
predefining variables 2-2949
saving 2-2736
variables in 2-3600
viewing contents of 2-3616

workspace variables
reading from disk 2-1960

writing
binary data to file 2-1308
formatted data to file 2-1245

WVisual, Figure property 2-1147
WVisualMode, Figure property 2-1149

X
X

annotation arrow property 2-150 2-154
annotation line property 2-161
textarrow property 2-175

X Windows Dump files
writing 2-1636

x-axis limits, setting and querying 2-3620
XAxisLocation, Axes property 2-296
XColor, Axes property 2-297
XData

areaseries property 2-207
barseries property 2-337
contour property 2-647
errorbar property 2-987
Image property 2-1604
Line property 2-1920
lineseries property 2-1933
Patch property 2-2358
quivergroup property 2-2576
scatter property 2-2773
stairseries property 2-2943
stem property 2-2976
Surface property 2-3117
surfaceplot property 2-3139

XDataMode
areaseries property 2-208
barseries property 2-337
contour property 2-647
errorbar property 2-987
lineseries property 2-1933
quivergroup property 2-2576
stairseries property 2-2943
stem property 2-2976
surfaceplot property 2-3139

XDataSource
areaseries property 2-208
barseries property 2-337
contour property 2-647
errorbar property 2-988

Index-59

Index

lineseries property 2-1934
quivergroup property 2-2577
scatter property 2-2773
stairseries property 2-2943
stem property 2-2977
surfaceplot property 2-3140

XDir, Axes property 2-297
XDisplay, Figure property 2-1149
XGrid, Axes property 2-298
xlabel 1-87 2-3618
XLabel, Axes property 2-298
xlim 2-3620
XLim, Axes property 2-299
XLimMode, Axes property 2-299
XLS files

loading 2-3625
xlsfinfo 2-3623
xlsread 2-3625
xlswrite 2-3635
XMinorGrid, Axes property 2-300
xmlread 2-3639
xmlwrite 2-3644
xor 2-3645
XOR, printing 2-201 2-330 2-637 2-978 2-1533

2-1599 2-1913 2-1925 2-2346 2-2565 2-2623
2-2765 2-2935 2-2968 2-3107 2-3128 2-3208

XScale, Axes property 2-300
xslt 2-3646
XTick, Axes property 2-300
XTickLabel, Axes property 2-301
XTickLabelMode, Axes property 2-302
XTickMode, Axes property 2-302
XVisual, Figure property 2-1150
XVisualMode, Figure property 2-1152
XWD files

writing 2-1636
xyz coordinates . See Cartesian coordinates

Y
Y

annotation arrow property 2-150 2-155 2-161
textarrow property 2-175

y-axis limits, setting and querying 2-3620
YAxisLocation, Axes property 2-297
YColor, Axes property 2-297
YData

areaseries property 2-209
barseries property 2-338
contour property 2-648
errorbar property 2-988
Image property 2-1604
Line property 2-1920
lineseries property 2-1934
Patch property 2-2359
quivergroup property 2-2577
scatter property 2-2774
stairseries property 2-2944
stem property 2-2977
Surface property 2-3117
surfaceplot property 2-3140

YDataMode
contour property 2-649
quivergroup property 2-2578
surfaceplot property 2-3141

YDataSource
areaseries property 2-209
barseries property 2-338
contour property 2-649
errorbar property 2-989
lineseries property 2-1934
quivergroup property 2-2578
scatter property 2-2774
stairseries property 2-2944
stem property 2-2978
surfaceplot property 2-3141

YDir, Axes property 2-297
YGrid, Axes property 2-298
ylabel 1-87 2-3618

Index-60

Index

YLabel, Axes property 2-298
ylim 2-3620
YLim, Axes property 2-299
YLimMode, Axes property 2-299
YMinorGrid, Axes property 2-300
YScale, Axes property 2-300
YTick, Axes property 2-300
YTickLabel, Axes property 2-301
YTickLabelMode, Axes property 2-302
YTickMode, Axes property 2-302

Z
z-axis limits, setting and querying 2-3620
ZColor, Axes property 2-297
ZData

contour property 2-649
Line property 2-1920
lineseries property 2-1935
Patch property 2-2359
quivergroup property 2-2579
scatter property 2-2774
stemseries property 2-2978
Surface property 2-3117

surfaceplot property 2-3142
ZDataSource

contour property 2-650
lineseries property 2-1935 2-2979
scatter property 2-2775
surfaceplot property 2-3142

ZDir, Axes property 2-297
zero of a function, finding 2-1314
zeros 2-3648
ZGrid, Axes property 2-298
zip 2-3650
zlabel 1-87 2-3618
zlim 2-3620
ZLim, Axes property 2-299
ZLimMode, Axes property 2-299
ZMinorGrid, Axes property 2-300
zoom 2-3652
zoom mode objects 2-3653
ZScale, Axes property 2-300
ZTick, Axes property 2-300
ZTickLabel, Axes property 2-301
ZTickLabelMode, Axes property 2-302
ZTickMode, Axes property 2-302

Index-61

	toc
	Functions — By Category
	Desktop Tools and Development Environment
	Startup and Shutdown
	Command Window and History
	Help for Using MATLAB
	Workspace, Search Path, and File Operations
	Workspace
	Search Path
	File Operations

	Programming Tools
	Edit and Debug M-Files
	Improve Performance and Tune M-Files
	Source Control
	Publishing

	System
	Operating System Interface
	MATLAB Version and License

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Elementary Matrices and Arrays
	Array Operations
	Array Manipulation
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math (e.g., Prime Factors)

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Cartesian Coordinate System Conversion
	Nonlinear Numerical Methods
	Ordinary Differential Equations (IVP)
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Data Analysis
	Basic Operations
	Descriptive Statistics
	Filtering and Convolution
	Interpolation and Regression
	Fourier Transforms
	Derivatives and Integrals
	Time Series Objects
	General Purpose
	Data Manipulation
	Event Data
	Descriptive Statistics

	Time Series Collections
	General Purpose
	Data Manipulation

	Programming and Data Types
	Data Types
	Numeric Types
	Characters and Strings
	Structures
	Cell Arrays
	Function Handles
	MATLAB Classes and Objects
	Java Classes and Objects
	Data Type Identification

	Data Type Conversion
	Numeric
	String to Numeric
	Numeric to String
	Other Conversions

	Operators and Special Characters
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Special Characters

	String Functions
	Description of Strings in MATLAB
	String Creation
	String Identification
	String Manipulation
	String Parsing
	String Evaluation
	String Comparison

	Bit-wise Functions
	Logical Functions
	Relational Functions
	Set Functions
	Date and Time Functions
	Programming in MATLAB
	M-File Functions and Scripts
	Evaluation of Expressions and Functions
	Timer Functions
	Variables and Functions in Memory
	Control Flow
	Error Handling
	MEX Programming

	File I/O
	File Name Construction
	Opening, Loading, Saving Files
	Memory Mapping
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel Functions
	Lotus 1-2-3 Functions

	Scientific Data
	Common Data Format (CDF)
	Flexible Image Transport System
	Hierarchical Data Format (HDF)
	Band-Interleaved Data

	Audio and Audio/Video
	General
	SPARCstation-Specific Sound Functions
	Microsoft WAVE Sound Functions
	Audio/Video Interleaved (AVI) Functions

	Images
	Internet Exchange
	URL, Zip, Tar, E-Mail
	FTP Functions

	Graphics
	Basic Plots and Graphs
	Plotting Tools
	Annotating Plots
	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter/Bubble Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Finding and Identifying Graphics Objects
	Object Creation Functions
	Plot Objects
	Figure Windows
	Axes Operations
	Operating on Object Properties

	3-D Visualization
	Surface and Mesh Plots
	Creating Surfaces and Meshes
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Controlling the Camera Viewpoint
	Setting the Aspect Ratio and Axis Limits
	Object Manipulation
	Selecting Region of Interest

	Lighting
	Transparency
	Volume Visualization

	Creating Graphical User Interfaces
	Predefined Dialog Boxes
	Deploying User Interfaces
	Developing User Interfaces
	User Interface Objects
	Finding Objects from Callbacks
	GUI Utility Functions
	Controlling Program Execution

	External Interfaces
	Dynamic Link Libraries
	Java
	Component Object Model and ActiveX
	Dynamic Data Exchange
	Web Services
	Serial Port Devices

	Functions — Alphabetical List
	Consider the 2-by-1-by-3 array Y = rand(2,1,3) . This array has
	Consider the 1-by-1-by-5 array mat=repmat(1,[1,1,5]) . This arra

	Index

	tables
	BVP Error Tolerance Properties
	Vectorization Properties
	BVP Analytical Partial Derivative Properties
	Singular BVP Property
	BVP Mesh Size Property
	BVP Solution Statistic Property
	32–bit Platforms
	64–bit Platforms
	Data Size Before and After Transposing
	Standard MATLAB Date Format Definitions
	Free-Form Date Format Specifiers
	DDE Error Control Properties
	DDE Solver Output Properties
	DDE Step Size Properties
	DDE Events Property
	DDE Discontinuity Properties
	Data Arrays or Extensions
	Permission Specifiers
	Binary and Text Modes
	Full Precision Support
	Limited Precision Support: (double or equivalent)
	Fields of the Attribute Structure
	Fields of the Raster8 and Raster24 Structures
	Fields of the SDS Structure
	Fields of the Vdata Structure
	Fields of the Vgroup Structure
	Fields of the Grid Structure
	Fields of the Point Structure
	Fields of the Swath Structure
	Values for helpOption
	Values for archOption
	Values for dispOption
	Values for modeOption
	Values for mgrOption
	Values for helpOption
	Values for mgrOption
	ODE Events Property
	Jacobian Properties for All Implicit Solvers Except ode15i
	Jacobian Properties for ode15i
	Mass Matrix and DAE Properties (Solvers Other Than ode15i)
	ode15s and ode15i-Specific Properties
	Interpretation of the CData Property
	Interpretation of the FaceVertexCData Property
	Options for publish
	Return Values for Regular Expressions
	Negative Zero Printed with %e, %E, %f, %g, or %G
	Exponents Printed with %e, %E, %g, or %G
	Formats for strread
	Parameters and Values for strread
	Option Structure Fields and Descriptions
	Data Size Before and After Transposing
	Time Series Object Properties
	Data Types for wavplay
	Native Formats
	Double Formats

